============================================================ | | | Crystallography & NMR System (CNS) | | CNSsolve | | | ============================================================ Version: 1.1 Status: Developmental version ============================================================ Written by: A.T.Brunger, P.D.Adams, G.M.Clore, W.L.DeLano, P.Gros, R.W.Grosse-Kunstleve, J.-S.Jiang, J.Kuszewski, M.Nilges, N.S.Pannu, R.J.Read, L.M.Rice, T.Simonson, G.L.Warren. Copyright (c) 1997-1999 Yale University ============================================================ Running on machine: cesg-master.biochem.wisc.edu (Linux,32-bit) Program started by: lytle Program started at: 17:57:28 on 3-Mar-04 ============================================================ FFT3C: Using FFTPACK4.1 CNSsolve>define( DEFINE>{* selection of atoms other than hydrogens for which coordinates DEFINE> will be generated *} DEFINE>{* to generate coordinates for all unknown atoms use: (not(known)) *} DEFINE>{===>} atom_build=(not(known)); DEFINE>{============================= output files ================================} DEFINE> DEFINE>{* input coordinate file *} DEFINE>{===>} coordinate_infile="1xxx_20.pdb"; DEFINE> DEFINE>{* output coordinate file *} DEFINE>{===>} coordinate_outfile="1xxx_20_cns.pdb"; DEFINE>) CNSsolve> CNSsolve> checkversion 1.1 Program version= 1.1 File version= 1.1 CNSsolve> CNSsolve> evaluate ($log_level=verbose) Assuming literal string "VERBOSE" EVALUATE: symbol $LOG_LEVEL set to "VERBOSE" (string) CNSsolve> evaluate ($par_nonbonded="PROLSQ") EVALUATE: symbol $PAR_NONBONDED set to "PROLSQ" (string) CNSsolve> CNSsolve> !@generateProtonsJFD.inp CNSsolve> CNSsolve>{===========================================================================} CNSsolve>{ things below this line do not need to be changed } CNSsolve>{===========================================================================} CNSsolve> CNSsolve>remarks changed Tue Sep 2 09:48:07 CDT 2003 CNSsolve>remarks by jfd to include a fes residue CNSsolve> CNSsolve>!@generate_tmoc.inp CNSsolve> CNSsolve>topology reset end CNSsolve>structure reset end Status of internal molecular topology database: -> NATOM= 0(MAXA= 40000) NBOND= 0(MAXB= 40000) -> NTHETA= 0(MAXT= 80000) NGRP= 0(MAXGRP= 40000) -> NPHI= 0(MAXP= 80000) NIMPHI= 0(MAXIMP= 40000) -> NNB= 0(MAXNB= 40000) CNSsolve> CNSsolve>topology RTFRDR>{===>} @TOPPAR:topallhdg5.3.pro ASSFIL: file /u/volkman/waterrefine/toppar/topallhdg5.3.pro opened. RTFRDR>remark file topallhdg.pro version 5.3 date 23-Sept-02 RTFRDR>remark for file parallhdg.pro version 5.3 date 13-Feb-02 or later RTFRDR>remark Geometric energy function parameters for distance geometry and RTFRDR>remark simulated annealing. RTFRDR>remark Author: Michael Nilges, EMBL Heidelberg; Institut Pasteur, Paris RTFRDR>remark This file contains modifications from M. Williams, UCL London RTFRDR>remark Last modification 16-Sept-02 RTFRDR> RTFRDR>set echo off message off end RTFRDR>end CNSsolve> CNSsolve>! no chain id. CNSsolve>segment name=" " SEGMENT> chain CHAIN> @TOPPAR:topallhdg5.3.pep CHAIN>REMARKS TOPH19.pep -MACRO for protein sequence CHAIN>SET ECHO=FALSE END CHAIN> sequence SEQUENCE> @1xxx.seq SEQUENCE>MET SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) = end SEGMNT: 90 residues were inserted into segment " " CHAIN> end SEGMENT>end Status of internal molecular topology database: -> NATOM= 1385(MAXA= 40000) NBOND= 1392(MAXB= 40000) -> NTHETA= 2526(MAXT= 80000) NGRP= 92(MAXGRP= 40000) -> NPHI= 2186(MAXP= 80000) NIMPHI= 682(MAXIMP= 40000) -> NNB= 522(MAXNB= 40000) CNSsolve> CNSsolve>! turn peptide from trans to cis CNSsolve>!patch CISP reference=nil=( resid 80 ) end CNSsolve> CNSsolve>coor @&coordinate_infile COOR>HEADER Structures from CYANA 03-03-2004 COOR>REMARK model 20 COOR>ATOM 3053 N MET A 1 1.325 0.000 0.000 1.00 0.00 %READC-ERR: atom 1 MET HN not found in molecular structure %READC-ERR: atom 1 MET 2HB not found in molecular structure %READC-ERR: atom 1 MET 3HB not found in molecular structure %READC-ERR: atom 1 MET QB not found in molecular structure %READC-ERR: atom 1 MET 2HG not found in molecular structure %READC-ERR: atom 1 MET 3HG not found in molecular structure %READC-ERR: atom 1 MET QG not found in molecular structure %READC-ERR: atom 1 MET QE not found in molecular structure %READC-ERR: atom 1 MET 1HE not found in molecular structure %READC-ERR: atom 1 MET 2HE not found in molecular structure %READC-ERR: atom 1 MET 3HE not found in molecular structure %READC-ERR: atom 2 THR QG2 not found in molecular structure %READC-ERR: atom 2 THR 1HG2 not found in molecular structure %READC-ERR: atom 2 THR 2HG2 not found in molecular structure %READC-ERR: atom 2 THR 3HG2 not found in molecular structure %READC-ERR: atom 3 GLU 2HB not found in molecular structure %READC-ERR: atom 3 GLU 3HB not found in molecular structure %READC-ERR: atom 3 GLU QB not found in molecular structure %READC-ERR: atom 3 GLU 2HG not found in molecular structure %READC-ERR: atom 3 GLU 3HG not found in molecular structure %READC-ERR: atom 3 GLU QG not found in molecular structure %READC-ERR: atom 4 VAL QG1 not found in molecular structure %READC-ERR: atom 4 VAL QG2 not found in molecular structure %READC-ERR: atom 4 VAL 1HG1 not found in molecular structure %READC-ERR: atom 4 VAL 2HG1 not found in molecular structure %READC-ERR: atom 4 VAL 3HG1 not found in molecular structure %READC-ERR: atom 4 VAL 1HG2 not found in molecular structure %READC-ERR: atom 4 VAL 2HG2 not found in molecular structure %READC-ERR: atom 4 VAL 3HG2 not found in molecular structure %READC-ERR: atom 4 VAL QQG not found in molecular structure %READC-ERR: atom 5 TYR 2HB not found in molecular structure %READC-ERR: atom 5 TYR 3HB not found in molecular structure %READC-ERR: atom 5 TYR QB not found in molecular structure %READC-ERR: atom 5 TYR QD not found in molecular structure %READC-ERR: atom 5 TYR QE not found in molecular structure %READC-ERR: atom 5 TYR QR not found in molecular structure %READC-ERR: atom 6 ASP 2HB not found in molecular structure %READC-ERR: atom 6 ASP 3HB not found in molecular structure %READC-ERR: atom 6 ASP QB not found in molecular structure %READC-ERR: atom 7 LEU 2HB not found in molecular structure %READC-ERR: atom 7 LEU 3HB not found in molecular structure %READC-ERR: atom 7 LEU QB not found in molecular structure %READC-ERR: atom 7 LEU QD1 not found in molecular structure %READC-ERR: atom 7 LEU QD2 not found in molecular structure %READC-ERR: atom 7 LEU 1HD1 not found in molecular structure %READC-ERR: atom 7 LEU 2HD1 not found in molecular structure %READC-ERR: atom 7 LEU 3HD1 not found in molecular structure %READC-ERR: atom 7 LEU 1HD2 not found in molecular structure %READC-ERR: atom 7 LEU 2HD2 not found in molecular structure %READC-ERR: atom 7 LEU 3HD2 not found in molecular structure %READC-ERR: atom 7 LEU QQD not found in molecular structure %READC-ERR: atom 8 GLU 2HB not found in molecular structure %READC-ERR: atom 8 GLU 3HB not found in molecular structure %READC-ERR: atom 8 GLU QB not found in molecular structure %READC-ERR: atom 8 GLU 2HG not found in molecular structure %READC-ERR: atom 8 GLU 3HG not found in molecular structure %READC-ERR: atom 8 GLU QG not found in molecular structure %READC-ERR: atom 9 ILE QG2 not found in molecular structure %READC-ERR: atom 9 ILE 1HG2 not found in molecular structure %READC-ERR: atom 9 ILE 2HG2 not found in molecular structure %READC-ERR: atom 9 ILE 3HG2 not found in molecular structure %READC-ERR: atom 9 ILE 2HG1 not found in molecular structure %READC-ERR: atom 9 ILE 3HG1 not found in molecular structure %READC-ERR: atom 9 ILE QG1 not found in molecular structure %READC-ERR: atom 9 ILE QD1 not found in molecular structure %READC-ERR: atom 9 ILE 1HD1 not found in molecular structure %READC-ERR: atom 9 ILE 2HD1 not found in molecular structure %READC-ERR: atom 9 ILE 3HD1 not found in molecular structure %READC-ERR: atom 10 THR QG2 not found in molecular structure %READC-ERR: atom 10 THR 1HG2 not found in molecular structure %READC-ERR: atom 10 THR 2HG2 not found in molecular structure %READC-ERR: atom 10 THR 3HG2 not found in molecular structure %READC-ERR: atom 11 THR QG2 not found in molecular structure %READC-ERR: atom 11 THR 1HG2 not found in molecular structure %READC-ERR: atom 11 THR 2HG2 not found in molecular structure %READC-ERR: atom 11 THR 3HG2 not found in molecular structure %READC-ERR: atom 12 ASN 2HB not found in molecular structure %READC-ERR: atom 12 ASN 3HB not found in molecular structure %READC-ERR: atom 12 ASN QB not found in molecular structure %READC-ERR: atom 12 ASN 1HD2 not found in molecular structure %READC-ERR: atom 12 ASN 2HD2 not found in molecular structure %READC-ERR: atom 12 ASN QD2 not found in molecular structure %READC-ERR: atom 13 ALA QB not found in molecular structure %READC-ERR: atom 13 ALA 1HB not found in molecular structure %READC-ERR: atom 13 ALA 2HB not found in molecular structure %READC-ERR: atom 13 ALA 3HB not found in molecular structure %READC-ERR: atom 14 THR QG2 not found in molecular structure %READC-ERR: atom 14 THR 1HG2 not found in molecular structure %READC-ERR: atom 14 THR 2HG2 not found in molecular structure %READC-ERR: atom 14 THR 3HG2 not found in molecular structure %READC-ERR: atom 15 ASP 2HB not found in molecular structure %READC-ERR: atom 15 ASP 3HB not found in molecular structure %READC-ERR: atom 15 ASP QB not found in molecular structure %READC-ERR: atom 16 PHE 2HB not found in molecular structure %READC-ERR: atom 16 PHE 3HB not found in molecular structure %READC-ERR: atom 16 PHE QB not found in molecular structure %READC-ERR: atom 16 PHE QD not found in molecular structure %READC-ERR: atom 16 PHE QE not found in molecular structure %READC-ERR: atom 16 PHE QR not found in molecular structure %READC-ERR: atom 17 PRO 2HB not found in molecular structure %READC-ERR: atom 17 PRO 3HB not found in molecular structure %READC-ERR: atom 17 PRO QB not found in molecular structure %READC-ERR: atom 17 PRO 2HG not found in molecular structure %READC-ERR: atom 17 PRO 3HG not found in molecular structure %READC-ERR: atom 17 PRO QG not found in molecular structure %READC-ERR: atom 17 PRO 2HD not found in molecular structure %READC-ERR: atom 17 PRO 3HD not found in molecular structure %READC-ERR: atom 17 PRO QD not found in molecular structure %READC-ERR: atom 18 MET 2HB not found in molecular structure %READC-ERR: atom 18 MET 3HB not found in molecular structure %READC-ERR: atom 18 MET QB not found in molecular structure %READC-ERR: atom 18 MET 2HG not found in molecular structure %READC-ERR: atom 18 MET 3HG not found in molecular structure %READC-ERR: atom 18 MET QG not found in molecular structure %READC-ERR: atom 18 MET QE not found in molecular structure %READC-ERR: atom 18 MET 1HE not found in molecular structure %READC-ERR: atom 18 MET 2HE not found in molecular structure %READC-ERR: atom 18 MET 3HE not found in molecular structure %READC-ERR: atom 19 GLU 2HB not found in molecular structure %READC-ERR: atom 19 GLU 3HB not found in molecular structure %READC-ERR: atom 19 GLU QB not found in molecular structure %READC-ERR: atom 19 GLU 2HG not found in molecular structure %READC-ERR: atom 19 GLU 3HG not found in molecular structure %READC-ERR: atom 19 GLU QG not found in molecular structure %READC-ERR: atom 20 LYS 2HB not found in molecular structure %READC-ERR: atom 20 LYS 3HB not found in molecular structure %READC-ERR: atom 20 LYS QB not found in molecular structure %READC-ERR: atom 20 LYS 2HG not found in molecular structure %READC-ERR: atom 20 LYS 3HG not found in molecular structure %READC-ERR: atom 20 LYS QG not found in molecular structure %READC-ERR: atom 20 LYS 2HD not found in molecular structure %READC-ERR: atom 20 LYS 3HD not found in molecular structure %READC-ERR: atom 20 LYS QD not found in molecular structure %READC-ERR: atom 20 LYS 2HE not found in molecular structure %READC-ERR: atom 20 LYS 3HE not found in molecular structure %READC-ERR: atom 20 LYS QE not found in molecular structure %READC-ERR: atom 20 LYS 1HZ not found in molecular structure %READC-ERR: atom 20 LYS 2HZ not found in molecular structure %READC-ERR: atom 20 LYS 3HZ not found in molecular structure %READC-ERR: atom 20 LYS QZ not found in molecular structure %READC-ERR: atom 21 LYS 2HB not found in molecular structure %READC-ERR: atom 21 LYS 3HB not found in molecular structure %READC-ERR: atom 21 LYS QB not found in molecular structure %READC-ERR: atom 21 LYS 2HG not found in molecular structure %READC-ERR: atom 21 LYS 3HG not found in molecular structure %READC-ERR: atom 21 LYS QG not found in molecular structure %READC-ERR: atom 21 LYS 2HD not found in molecular structure %READC-ERR: atom 21 LYS 3HD not found in molecular structure %READC-ERR: atom 21 LYS QD not found in molecular structure %READC-ERR: atom 21 LYS 2HE not found in molecular structure %READC-ERR: atom 21 LYS 3HE not found in molecular structure %READC-ERR: atom 21 LYS QE not found in molecular structure %READC-ERR: atom 21 LYS 1HZ not found in molecular structure %READC-ERR: atom 21 LYS 2HZ not found in molecular structure %READC-ERR: atom 21 LYS 3HZ not found in molecular structure %READC-ERR: atom 21 LYS QZ not found in molecular structure %READC-ERR: atom 22 TYR 2HB not found in molecular structure %READC-ERR: atom 22 TYR 3HB not found in molecular structure %READC-ERR: atom 22 TYR QB not found in molecular structure %READC-ERR: atom 22 TYR QD not found in molecular structure %READC-ERR: atom 22 TYR QE not found in molecular structure %READC-ERR: atom 22 TYR QR not found in molecular structure %READC-ERR: atom 23 PRO 2HB not found in molecular structure %READC-ERR: atom 23 PRO 3HB not found in molecular structure %READC-ERR: atom 23 PRO QB not found in molecular structure %READC-ERR: atom 23 PRO 2HG not found in molecular structure %READC-ERR: atom 23 PRO 3HG not found in molecular structure %READC-ERR: atom 23 PRO QG not found in molecular structure %READC-ERR: atom 23 PRO 2HD not found in molecular structure %READC-ERR: atom 23 PRO 3HD not found in molecular structure %READC-ERR: atom 23 PRO QD not found in molecular structure %READC-ERR: atom 24 ALA QB not found in molecular structure %READC-ERR: atom 24 ALA 1HB not found in molecular structure %READC-ERR: atom 24 ALA 2HB not found in molecular structure %READC-ERR: atom 24 ALA 3HB not found in molecular structure %READC-ERR: atom 25 GLY 1HA not found in molecular structure %READC-ERR: atom 25 GLY 2HA not found in molecular structure %READC-ERR: atom 25 GLY QA not found in molecular structure %READC-ERR: atom 26 MET 2HB not found in molecular structure %READC-ERR: atom 26 MET 3HB not found in molecular structure %READC-ERR: atom 26 MET QB not found in molecular structure %READC-ERR: atom 26 MET 2HG not found in molecular structure %READC-ERR: atom 26 MET 3HG not found in molecular structure %READC-ERR: atom 26 MET QG not found in molecular structure %READC-ERR: atom 26 MET QE not found in molecular structure %READC-ERR: atom 26 MET 1HE not found in molecular structure %READC-ERR: atom 26 MET 2HE not found in molecular structure %READC-ERR: atom 26 MET 3HE not found in molecular structure %READC-ERR: atom 27 SER 2HB not found in molecular structure %READC-ERR: atom 27 SER 3HB not found in molecular structure %READC-ERR: atom 27 SER QB not found in molecular structure %READC-ERR: atom 28 LEU 2HB not found in molecular structure %READC-ERR: atom 28 LEU 3HB not found in molecular structure %READC-ERR: atom 28 LEU QB not found in molecular structure %READC-ERR: atom 28 LEU QD1 not found in molecular structure %READC-ERR: atom 28 LEU QD2 not found in molecular structure %READC-ERR: atom 28 LEU 1HD1 not found in molecular structure %READC-ERR: atom 28 LEU 2HD1 not found in molecular structure %READC-ERR: atom 28 LEU 3HD1 not found in molecular structure %READC-ERR: atom 28 LEU 1HD2 not found in molecular structure %READC-ERR: atom 28 LEU 2HD2 not found in molecular structure %READC-ERR: atom 28 LEU 3HD2 not found in molecular structure %READC-ERR: atom 28 LEU QQD not found in molecular structure %READC-ERR: atom 29 ASN 2HB not found in molecular structure %READC-ERR: atom 29 ASN 3HB not found in molecular structure %READC-ERR: atom 29 ASN QB not found in molecular structure %READC-ERR: atom 29 ASN 1HD2 not found in molecular structure %READC-ERR: atom 29 ASN 2HD2 not found in molecular structure %READC-ERR: atom 29 ASN QD2 not found in molecular structure %READC-ERR: atom 30 ASP 2HB not found in molecular structure %READC-ERR: atom 30 ASP 3HB not found in molecular structure %READC-ERR: atom 30 ASP QB not found in molecular structure %READC-ERR: atom 31 LEU 2HB not found in molecular structure %READC-ERR: atom 31 LEU 3HB not found in molecular structure %READC-ERR: atom 31 LEU QB not found in molecular structure %READC-ERR: atom 31 LEU QD1 not found in molecular structure %READC-ERR: atom 31 LEU QD2 not found in molecular structure %READC-ERR: atom 31 LEU 1HD1 not found in molecular structure %READC-ERR: atom 31 LEU 2HD1 not found in molecular structure %READC-ERR: atom 31 LEU 3HD1 not found in molecular structure %READC-ERR: atom 31 LEU 1HD2 not found in molecular structure %READC-ERR: atom 31 LEU 2HD2 not found in molecular structure %READC-ERR: atom 31 LEU 3HD2 not found in molecular structure %READC-ERR: atom 31 LEU QQD not found in molecular structure %READC-ERR: atom 32 LYS 2HB not found in molecular structure %READC-ERR: atom 32 LYS 3HB not found in molecular structure %READC-ERR: atom 32 LYS QB not found in molecular structure %READC-ERR: atom 32 LYS 2HG not found in molecular structure %READC-ERR: atom 32 LYS 3HG not found in molecular structure %READC-ERR: atom 32 LYS QG not found in molecular structure %READC-ERR: atom 32 LYS 2HD not found in molecular structure %READC-ERR: atom 32 LYS 3HD not found in molecular structure %READC-ERR: atom 32 LYS QD not found in molecular structure %READC-ERR: atom 32 LYS 2HE not found in molecular structure %READC-ERR: atom 32 LYS 3HE not found in molecular structure %READC-ERR: atom 32 LYS QE not found in molecular structure %READC-ERR: atom 32 LYS 1HZ not found in molecular structure %READC-ERR: atom 32 LYS 2HZ not found in molecular structure %READC-ERR: atom 32 LYS 3HZ not found in molecular structure %READC-ERR: atom 32 LYS QZ not found in molecular structure %READC-ERR: atom 33 LYS 2HB not found in molecular structure %READC-ERR: atom 33 LYS 3HB not found in molecular structure %READC-ERR: atom 33 LYS QB not found in molecular structure %READC-ERR: atom 33 LYS 2HG not found in molecular structure %READC-ERR: atom 33 LYS 3HG not found in molecular structure %READC-ERR: atom 33 LYS QG not found in molecular structure %READC-ERR: atom 33 LYS 2HD not found in molecular structure %READC-ERR: atom 33 LYS 3HD not found in molecular structure %READC-ERR: atom 33 LYS QD not found in molecular structure %READC-ERR: atom 33 LYS 2HE not found in molecular structure %READC-ERR: atom 33 LYS 3HE not found in molecular structure %READC-ERR: atom 33 LYS QE not found in molecular structure %READC-ERR: atom 33 LYS 1HZ not found in molecular structure %READC-ERR: atom 33 LYS 2HZ not found in molecular structure %READC-ERR: atom 33 LYS 3HZ not found in molecular structure %READC-ERR: atom 33 LYS QZ not found in molecular structure %READC-ERR: atom 34 LYS 2HB not found in molecular structure %READC-ERR: atom 34 LYS 3HB not found in molecular structure %READC-ERR: atom 34 LYS QB not found in molecular structure %READC-ERR: atom 34 LYS 2HG not found in molecular structure %READC-ERR: atom 34 LYS 3HG not found in molecular structure %READC-ERR: atom 34 LYS QG not found in molecular structure %READC-ERR: atom 34 LYS 2HD not found in molecular structure %READC-ERR: atom 34 LYS 3HD not found in molecular structure %READC-ERR: atom 34 LYS QD not found in molecular structure %READC-ERR: atom 34 LYS 2HE not found in molecular structure %READC-ERR: atom 34 LYS 3HE not found in molecular structure %READC-ERR: atom 34 LYS QE not found in molecular structure %READC-ERR: atom 34 LYS 1HZ not found in molecular structure %READC-ERR: atom 34 LYS 2HZ not found in molecular structure %READC-ERR: atom 34 LYS 3HZ not found in molecular structure %READC-ERR: atom 34 LYS QZ not found in molecular structure %READC-ERR: atom 35 LEU 2HB not found in molecular structure %READC-ERR: atom 35 LEU 3HB not found in molecular structure %READC-ERR: atom 35 LEU QB not found in molecular structure %READC-ERR: atom 35 LEU QD1 not found in molecular structure %READC-ERR: atom 35 LEU QD2 not found in molecular structure %READC-ERR: atom 35 LEU 1HD1 not found in molecular structure %READC-ERR: atom 35 LEU 2HD1 not found in molecular structure %READC-ERR: atom 35 LEU 3HD1 not found in molecular structure %READC-ERR: atom 35 LEU 1HD2 not found in molecular structure %READC-ERR: atom 35 LEU 2HD2 not found in molecular structure %READC-ERR: atom 35 LEU 3HD2 not found in molecular structure %READC-ERR: atom 35 LEU QQD not found in molecular structure %READC-ERR: atom 36 GLU 2HB not found in molecular structure %READC-ERR: atom 36 GLU 3HB not found in molecular structure %READC-ERR: atom 36 GLU QB not found in molecular structure %READC-ERR: atom 36 GLU 2HG not found in molecular structure %READC-ERR: atom 36 GLU 3HG not found in molecular structure %READC-ERR: atom 36 GLU QG not found in molecular structure %READC-ERR: atom 37 LEU 2HB not found in molecular structure %READC-ERR: atom 37 LEU 3HB not found in molecular structure %READC-ERR: atom 37 LEU QB not found in molecular structure %READC-ERR: atom 37 LEU QD1 not found in molecular structure %READC-ERR: atom 37 LEU QD2 not found in molecular structure %READC-ERR: atom 37 LEU 1HD1 not found in molecular structure %READC-ERR: atom 37 LEU 2HD1 not found in molecular structure %READC-ERR: atom 37 LEU 3HD1 not found in molecular structure %READC-ERR: atom 37 LEU 1HD2 not found in molecular structure %READC-ERR: atom 37 LEU 2HD2 not found in molecular structure %READC-ERR: atom 37 LEU 3HD2 not found in molecular structure %READC-ERR: atom 37 LEU QQD not found in molecular structure %READC-ERR: atom 38 VAL QG1 not found in molecular structure %READC-ERR: atom 38 VAL QG2 not found in molecular structure %READC-ERR: atom 38 VAL 1HG1 not found in molecular structure %READC-ERR: atom 38 VAL 2HG1 not found in molecular structure %READC-ERR: atom 38 VAL 3HG1 not found in molecular structure %READC-ERR: atom 38 VAL 1HG2 not found in molecular structure %READC-ERR: atom 38 VAL 2HG2 not found in molecular structure %READC-ERR: atom 38 VAL 3HG2 not found in molecular structure %READC-ERR: atom 38 VAL QQG not found in molecular structure %READC-ERR: atom 39 VAL QG1 not found in molecular structure %READC-ERR: atom 39 VAL QG2 not found in molecular structure %READC-ERR: atom 39 VAL 1HG1 not found in molecular structure %READC-ERR: atom 39 VAL 2HG1 not found in molecular structure %READC-ERR: atom 39 VAL 3HG1 not found in molecular structure %READC-ERR: atom 39 VAL 1HG2 not found in molecular structure %READC-ERR: atom 39 VAL 2HG2 not found in molecular structure %READC-ERR: atom 39 VAL 3HG2 not found in molecular structure %READC-ERR: atom 39 VAL QQG not found in molecular structure %READC-ERR: atom 40 GLY 1HA not found in molecular structure %READC-ERR: atom 40 GLY 2HA not found in molecular structure %READC-ERR: atom 40 GLY QA not found in molecular structure %READC-ERR: atom 41 THR QG2 not found in molecular structure %READC-ERR: atom 41 THR 1HG2 not found in molecular structure %READC-ERR: atom 41 THR 2HG2 not found in molecular structure %READC-ERR: atom 41 THR 3HG2 not found in molecular structure %READC-ERR: atom 42 THR QG2 not found in molecular structure %READC-ERR: atom 42 THR 1HG2 not found in molecular structure %READC-ERR: atom 42 THR 2HG2 not found in molecular structure %READC-ERR: atom 42 THR 3HG2 not found in molecular structure %READC-ERR: atom 43 VAL QG1 not found in molecular structure %READC-ERR: atom 43 VAL QG2 not found in molecular structure %READC-ERR: atom 43 VAL 1HG1 not found in molecular structure %READC-ERR: atom 43 VAL 2HG1 not found in molecular structure %READC-ERR: atom 43 VAL 3HG1 not found in molecular structure %READC-ERR: atom 43 VAL 1HG2 not found in molecular structure %READC-ERR: atom 43 VAL 2HG2 not found in molecular structure %READC-ERR: atom 43 VAL 3HG2 not found in molecular structure %READC-ERR: atom 43 VAL QQG not found in molecular structure %READC-ERR: atom 44 ASP 2HB not found in molecular structure %READC-ERR: atom 44 ASP 3HB not found in molecular structure %READC-ERR: atom 44 ASP QB not found in molecular structure %READC-ERR: atom 45 SER 2HB not found in molecular structure %READC-ERR: atom 45 SER 3HB not found in molecular structure %READC-ERR: atom 45 SER QB not found in molecular structure %READC-ERR: atom 46 MET 2HB not found in molecular structure %READC-ERR: atom 46 MET 3HB not found in molecular structure %READC-ERR: atom 46 MET QB not found in molecular structure %READC-ERR: atom 46 MET 2HG not found in molecular structure %READC-ERR: atom 46 MET 3HG not found in molecular structure %READC-ERR: atom 46 MET QG not found in molecular structure %READC-ERR: atom 46 MET QE not found in molecular structure %READC-ERR: atom 46 MET 1HE not found in molecular structure %READC-ERR: atom 46 MET 2HE not found in molecular structure %READC-ERR: atom 46 MET 3HE not found in molecular structure %READC-ERR: atom 47 ARG 2HB not found in molecular structure %READC-ERR: atom 47 ARG 3HB not found in molecular structure %READC-ERR: atom 47 ARG QB not found in molecular structure %READC-ERR: atom 47 ARG 2HG not found in molecular structure %READC-ERR: atom 47 ARG 3HG not found in molecular structure %READC-ERR: atom 47 ARG QG not found in molecular structure %READC-ERR: atom 47 ARG 2HD not found in molecular structure %READC-ERR: atom 47 ARG 3HD not found in molecular structure %READC-ERR: atom 47 ARG QD not found in molecular structure %READC-ERR: atom 47 ARG 1HH1 not found in molecular structure %READC-ERR: atom 47 ARG 2HH1 not found in molecular structure %READC-ERR: atom 47 ARG QH1 not found in molecular structure %READC-ERR: atom 47 ARG 1HH2 not found in molecular structure %READC-ERR: atom 47 ARG 2HH2 not found in molecular structure %READC-ERR: atom 47 ARG QH2 not found in molecular structure %READC-ERR: atom 48 ILE QG2 not found in molecular structure %READC-ERR: atom 48 ILE 1HG2 not found in molecular structure %READC-ERR: atom 48 ILE 2HG2 not found in molecular structure %READC-ERR: atom 48 ILE 3HG2 not found in molecular structure %READC-ERR: atom 48 ILE 2HG1 not found in molecular structure %READC-ERR: atom 48 ILE 3HG1 not found in molecular structure %READC-ERR: atom 48 ILE QG1 not found in molecular structure %READC-ERR: atom 48 ILE QD1 not found in molecular structure %READC-ERR: atom 48 ILE 1HD1 not found in molecular structure %READC-ERR: atom 48 ILE 2HD1 not found in molecular structure %READC-ERR: atom 48 ILE 3HD1 not found in molecular structure %READC-ERR: atom 49 GLN 2HB not found in molecular structure %READC-ERR: atom 49 GLN 3HB not found in molecular structure %READC-ERR: atom 49 GLN QB not found in molecular structure %READC-ERR: atom 49 GLN 2HG not found in molecular structure %READC-ERR: atom 49 GLN 3HG not found in molecular structure %READC-ERR: atom 49 GLN QG not found in molecular structure %READC-ERR: atom 49 GLN 1HE2 not found in molecular structure %READC-ERR: atom 49 GLN 2HE2 not found in molecular structure %READC-ERR: atom 49 GLN QE2 not found in molecular structure %READC-ERR: atom 50 LEU 2HB not found in molecular structure %READC-ERR: atom 50 LEU 3HB not found in molecular structure %READC-ERR: atom 50 LEU QB not found in molecular structure %READC-ERR: atom 50 LEU QD1 not found in molecular structure %READC-ERR: atom 50 LEU QD2 not found in molecular structure %READC-ERR: atom 50 LEU 1HD1 not found in molecular structure %READC-ERR: atom 50 LEU 2HD1 not found in molecular structure %READC-ERR: atom 50 LEU 3HD1 not found in molecular structure %READC-ERR: atom 50 LEU 1HD2 not found in molecular structure %READC-ERR: atom 50 LEU 2HD2 not found in molecular structure %READC-ERR: atom 50 LEU 3HD2 not found in molecular structure %READC-ERR: atom 50 LEU QQD not found in molecular structure %READC-ERR: atom 51 PHE 2HB not found in molecular structure %READC-ERR: atom 51 PHE 3HB not found in molecular structure %READC-ERR: atom 51 PHE QB not found in molecular structure %READC-ERR: atom 51 PHE QD not found in molecular structure %READC-ERR: atom 51 PHE QE not found in molecular structure %READC-ERR: atom 51 PHE QR not found in molecular structure %READC-ERR: atom 52 ASP 2HB not found in molecular structure %READC-ERR: atom 52 ASP 3HB not found in molecular structure %READC-ERR: atom 52 ASP QB not found in molecular structure %READC-ERR: atom 53 GLY 1HA not found in molecular structure %READC-ERR: atom 53 GLY 2HA not found in molecular structure %READC-ERR: atom 53 GLY QA not found in molecular structure %READC-ERR: atom 54 ASP 2HB not found in molecular structure %READC-ERR: atom 54 ASP 3HB not found in molecular structure %READC-ERR: atom 54 ASP QB not found in molecular structure %READC-ERR: atom 55 ASP 2HB not found in molecular structure %READC-ERR: atom 55 ASP 3HB not found in molecular structure %READC-ERR: atom 55 ASP QB not found in molecular structure %READC-ERR: atom 56 GLN 2HB not found in molecular structure %READC-ERR: atom 56 GLN 3HB not found in molecular structure %READC-ERR: atom 56 GLN QB not found in molecular structure %READC-ERR: atom 56 GLN 2HG not found in molecular structure %READC-ERR: atom 56 GLN 3HG not found in molecular structure %READC-ERR: atom 56 GLN QG not found in molecular structure %READC-ERR: atom 56 GLN 1HE2 not found in molecular structure %READC-ERR: atom 56 GLN 2HE2 not found in molecular structure %READC-ERR: atom 56 GLN QE2 not found in molecular structure %READC-ERR: atom 57 LEU 2HB not found in molecular structure %READC-ERR: atom 57 LEU 3HB not found in molecular structure %READC-ERR: atom 57 LEU QB not found in molecular structure %READC-ERR: atom 57 LEU QD1 not found in molecular structure %READC-ERR: atom 57 LEU QD2 not found in molecular structure %READC-ERR: atom 57 LEU 1HD1 not found in molecular structure %READC-ERR: atom 57 LEU 2HD1 not found in molecular structure %READC-ERR: atom 57 LEU 3HD1 not found in molecular structure %READC-ERR: atom 57 LEU 1HD2 not found in molecular structure %READC-ERR: atom 57 LEU 2HD2 not found in molecular structure %READC-ERR: atom 57 LEU 3HD2 not found in molecular structure %READC-ERR: atom 57 LEU QQD not found in molecular structure %READC-ERR: atom 58 LYS 2HB not found in molecular structure %READC-ERR: atom 58 LYS 3HB not found in molecular structure %READC-ERR: atom 58 LYS QB not found in molecular structure %READC-ERR: atom 58 LYS 2HG not found in molecular structure %READC-ERR: atom 58 LYS 3HG not found in molecular structure %READC-ERR: atom 58 LYS QG not found in molecular structure %READC-ERR: atom 58 LYS 2HD not found in molecular structure %READC-ERR: atom 58 LYS 3HD not found in molecular structure %READC-ERR: atom 58 LYS QD not found in molecular structure %READC-ERR: atom 58 LYS 2HE not found in molecular structure %READC-ERR: atom 58 LYS 3HE not found in molecular structure %READC-ERR: atom 58 LYS QE not found in molecular structure %READC-ERR: atom 58 LYS 1HZ not found in molecular structure %READC-ERR: atom 58 LYS 2HZ not found in molecular structure %READC-ERR: atom 58 LYS 3HZ not found in molecular structure %READC-ERR: atom 58 LYS QZ not found in molecular structure %READC-ERR: atom 59 GLY 1HA not found in molecular structure %READC-ERR: atom 59 GLY 2HA not found in molecular structure %READC-ERR: atom 59 GLY QA not found in molecular structure %READC-ERR: atom 60 GLU 2HB not found in molecular structure %READC-ERR: atom 60 GLU 3HB not found in molecular structure %READC-ERR: atom 60 GLU QB not found in molecular structure %READC-ERR: atom 60 GLU 2HG not found in molecular structure %READC-ERR: atom 60 GLU 3HG not found in molecular structure %READC-ERR: atom 60 GLU QG not found in molecular structure %READC-ERR: atom 61 LEU 2HB not found in molecular structure %READC-ERR: atom 61 LEU 3HB not found in molecular structure %READC-ERR: atom 61 LEU QB not found in molecular structure %READC-ERR: atom 61 LEU QD1 not found in molecular structure %READC-ERR: atom 61 LEU QD2 not found in molecular structure %READC-ERR: atom 61 LEU 1HD1 not found in molecular structure %READC-ERR: atom 61 LEU 2HD1 not found in molecular structure %READC-ERR: atom 61 LEU 3HD1 not found in molecular structure %READC-ERR: atom 61 LEU 1HD2 not found in molecular structure %READC-ERR: atom 61 LEU 2HD2 not found in molecular structure %READC-ERR: atom 61 LEU 3HD2 not found in molecular structure %READC-ERR: atom 61 LEU QQD not found in molecular structure %READC-ERR: atom 62 THR QG2 not found in molecular structure %READC-ERR: atom 62 THR 1HG2 not found in molecular structure %READC-ERR: atom 62 THR 2HG2 not found in molecular structure %READC-ERR: atom 62 THR 3HG2 not found in molecular structure %READC-ERR: atom 63 ASP 2HB not found in molecular structure %READC-ERR: atom 63 ASP 3HB not found in molecular structure %READC-ERR: atom 63 ASP QB not found in molecular structure %READC-ERR: atom 64 GLY 1HA not found in molecular structure %READC-ERR: atom 64 GLY 2HA not found in molecular structure %READC-ERR: atom 64 GLY QA not found in molecular structure %READC-ERR: atom 65 ALA QB not found in molecular structure %READC-ERR: atom 65 ALA 1HB not found in molecular structure %READC-ERR: atom 65 ALA 2HB not found in molecular structure %READC-ERR: atom 65 ALA 3HB not found in molecular structure %READC-ERR: atom 66 LYS 2HB not found in molecular structure %READC-ERR: atom 66 LYS 3HB not found in molecular structure %READC-ERR: atom 66 LYS QB not found in molecular structure %READC-ERR: atom 66 LYS 2HG not found in molecular structure %READC-ERR: atom 66 LYS 3HG not found in molecular structure %READC-ERR: atom 66 LYS QG not found in molecular structure %READC-ERR: atom 66 LYS 2HD not found in molecular structure %READC-ERR: atom 66 LYS 3HD not found in molecular structure %READC-ERR: atom 66 LYS QD not found in molecular structure %READC-ERR: atom 66 LYS 2HE not found in molecular structure %READC-ERR: atom 66 LYS 3HE not found in molecular structure %READC-ERR: atom 66 LYS QE not found in molecular structure %READC-ERR: atom 66 LYS 1HZ not found in molecular structure %READC-ERR: atom 66 LYS 2HZ not found in molecular structure %READC-ERR: atom 66 LYS 3HZ not found in molecular structure %READC-ERR: atom 66 LYS QZ not found in molecular structure %READC-ERR: atom 67 SER 2HB not found in molecular structure %READC-ERR: atom 67 SER 3HB not found in molecular structure %READC-ERR: atom 67 SER QB not found in molecular structure %READC-ERR: atom 68 LEU 2HB not found in molecular structure %READC-ERR: atom 68 LEU 3HB not found in molecular structure %READC-ERR: atom 68 LEU QB not found in molecular structure %READC-ERR: atom 68 LEU QD1 not found in molecular structure %READC-ERR: atom 68 LEU QD2 not found in molecular structure %READC-ERR: atom 68 LEU 1HD1 not found in molecular structure %READC-ERR: atom 68 LEU 2HD1 not found in molecular structure %READC-ERR: atom 68 LEU 3HD1 not found in molecular structure %READC-ERR: atom 68 LEU 1HD2 not found in molecular structure %READC-ERR: atom 68 LEU 2HD2 not found in molecular structure %READC-ERR: atom 68 LEU 3HD2 not found in molecular structure %READC-ERR: atom 68 LEU QQD not found in molecular structure %READC-ERR: atom 69 LYS 2HB not found in molecular structure %READC-ERR: atom 69 LYS 3HB not found in molecular structure %READC-ERR: atom 69 LYS QB not found in molecular structure %READC-ERR: atom 69 LYS 2HG not found in molecular structure %READC-ERR: atom 69 LYS 3HG not found in molecular structure %READC-ERR: atom 69 LYS QG not found in molecular structure %READC-ERR: atom 69 LYS 2HD not found in molecular structure %READC-ERR: atom 69 LYS 3HD not found in molecular structure %READC-ERR: atom 69 LYS QD not found in molecular structure %READC-ERR: atom 69 LYS 2HE not found in molecular structure %READC-ERR: atom 69 LYS 3HE not found in molecular structure %READC-ERR: atom 69 LYS QE not found in molecular structure %READC-ERR: atom 69 LYS 1HZ not found in molecular structure %READC-ERR: atom 69 LYS 2HZ not found in molecular structure %READC-ERR: atom 69 LYS 3HZ not found in molecular structure %READC-ERR: atom 69 LYS QZ not found in molecular structure %READC-ERR: atom 70 ASP 2HB not found in molecular structure %READC-ERR: atom 70 ASP 3HB not found in molecular structure %READC-ERR: atom 70 ASP QB not found in molecular structure %READC-ERR: atom 71 LEU 2HB not found in molecular structure %READC-ERR: atom 71 LEU 3HB not found in molecular structure %READC-ERR: atom 71 LEU QB not found in molecular structure %READC-ERR: atom 71 LEU QD1 not found in molecular structure %READC-ERR: atom 71 LEU QD2 not found in molecular structure %READC-ERR: atom 71 LEU 1HD1 not found in molecular structure %READC-ERR: atom 71 LEU 2HD1 not found in molecular structure %READC-ERR: atom 71 LEU 3HD1 not found in molecular structure %READC-ERR: atom 71 LEU 1HD2 not found in molecular structure %READC-ERR: atom 71 LEU 2HD2 not found in molecular structure %READC-ERR: atom 71 LEU 3HD2 not found in molecular structure %READC-ERR: atom 71 LEU QQD not found in molecular structure %READC-ERR: atom 72 GLY 1HA not found in molecular structure %READC-ERR: atom 72 GLY 2HA not found in molecular structure %READC-ERR: atom 72 GLY QA not found in molecular structure %READC-ERR: atom 73 VAL QG1 not found in molecular structure %READC-ERR: atom 73 VAL QG2 not found in molecular structure %READC-ERR: atom 73 VAL 1HG1 not found in molecular structure %READC-ERR: atom 73 VAL 2HG1 not found in molecular structure %READC-ERR: atom 73 VAL 3HG1 not found in molecular structure %READC-ERR: atom 73 VAL 1HG2 not found in molecular structure %READC-ERR: atom 73 VAL 2HG2 not found in molecular structure %READC-ERR: atom 73 VAL 3HG2 not found in molecular structure %READC-ERR: atom 73 VAL QQG not found in molecular structure %READC-ERR: atom 74 ARG 2HB not found in molecular structure %READC-ERR: atom 74 ARG 3HB not found in molecular structure %READC-ERR: atom 74 ARG QB not found in molecular structure %READC-ERR: atom 74 ARG 2HG not found in molecular structure %READC-ERR: atom 74 ARG 3HG not found in molecular structure %READC-ERR: atom 74 ARG QG not found in molecular structure %READC-ERR: atom 74 ARG 2HD not found in molecular structure %READC-ERR: atom 74 ARG 3HD not found in molecular structure %READC-ERR: atom 74 ARG QD not found in molecular structure %READC-ERR: atom 74 ARG 1HH1 not found in molecular structure %READC-ERR: atom 74 ARG 2HH1 not found in molecular structure %READC-ERR: atom 74 ARG QH1 not found in molecular structure %READC-ERR: atom 74 ARG 1HH2 not found in molecular structure %READC-ERR: atom 74 ARG 2HH2 not found in molecular structure %READC-ERR: atom 74 ARG QH2 not found in molecular structure %READC-ERR: atom 75 ASP 2HB not found in molecular structure %READC-ERR: atom 75 ASP 3HB not found in molecular structure %READC-ERR: atom 75 ASP QB not found in molecular structure %READC-ERR: atom 76 GLY 1HA not found in molecular structure %READC-ERR: atom 76 GLY 2HA not found in molecular structure %READC-ERR: atom 76 GLY QA not found in molecular structure %READC-ERR: atom 77 TYR 2HB not found in molecular structure %READC-ERR: atom 77 TYR 3HB not found in molecular structure %READC-ERR: atom 77 TYR QB not found in molecular structure %READC-ERR: atom 77 TYR QD not found in molecular structure %READC-ERR: atom 77 TYR QE not found in molecular structure %READC-ERR: atom 77 TYR QR not found in molecular structure %READC-ERR: atom 78 ARG 2HB not found in molecular structure %READC-ERR: atom 78 ARG 3HB not found in molecular structure %READC-ERR: atom 78 ARG QB not found in molecular structure %READC-ERR: atom 78 ARG 2HG not found in molecular structure %READC-ERR: atom 78 ARG 3HG not found in molecular structure %READC-ERR: atom 78 ARG QG not found in molecular structure %READC-ERR: atom 78 ARG 2HD not found in molecular structure %READC-ERR: atom 78 ARG 3HD not found in molecular structure %READC-ERR: atom 78 ARG QD not found in molecular structure %READC-ERR: atom 78 ARG 1HH1 not found in molecular structure %READC-ERR: atom 78 ARG 2HH1 not found in molecular structure %READC-ERR: atom 78 ARG QH1 not found in molecular structure %READC-ERR: atom 78 ARG 1HH2 not found in molecular structure %READC-ERR: atom 78 ARG 2HH2 not found in molecular structure %READC-ERR: atom 78 ARG QH2 not found in molecular structure %READC-ERR: atom 79 ILE QG2 not found in molecular structure %READC-ERR: atom 79 ILE 1HG2 not found in molecular structure %READC-ERR: atom 79 ILE 2HG2 not found in molecular structure %READC-ERR: atom 79 ILE 3HG2 not found in molecular structure %READC-ERR: atom 79 ILE 2HG1 not found in molecular structure %READC-ERR: atom 79 ILE 3HG1 not found in molecular structure %READC-ERR: atom 79 ILE QG1 not found in molecular structure %READC-ERR: atom 79 ILE QD1 not found in molecular structure %READC-ERR: atom 79 ILE 1HD1 not found in molecular structure %READC-ERR: atom 79 ILE 2HD1 not found in molecular structure %READC-ERR: atom 79 ILE 3HD1 not found in molecular structure %READC-ERR: atom 80 HIS 2HB not found in molecular structure %READC-ERR: atom 80 HIS 3HB not found in molecular structure %READC-ERR: atom 80 HIS QB not found in molecular structure %READC-ERR: atom 81 ALA QB not found in molecular structure %READC-ERR: atom 81 ALA 1HB not found in molecular structure %READC-ERR: atom 81 ALA 2HB not found in molecular structure %READC-ERR: atom 81 ALA 3HB not found in molecular structure %READC-ERR: atom 82 VAL QG1 not found in molecular structure %READC-ERR: atom 82 VAL QG2 not found in molecular structure %READC-ERR: atom 82 VAL 1HG1 not found in molecular structure %READC-ERR: atom 82 VAL 2HG1 not found in molecular structure %READC-ERR: atom 82 VAL 3HG1 not found in molecular structure %READC-ERR: atom 82 VAL 1HG2 not found in molecular structure %READC-ERR: atom 82 VAL 2HG2 not found in molecular structure %READC-ERR: atom 82 VAL 3HG2 not found in molecular structure %READC-ERR: atom 82 VAL QQG not found in molecular structure %READC-ERR: atom 83 ASP 2HB not found in molecular structure %READC-ERR: atom 83 ASP 3HB not found in molecular structure %READC-ERR: atom 83 ASP QB not found in molecular structure %READC-ERR: atom 84 VAL QG1 not found in molecular structure %READC-ERR: atom 84 VAL QG2 not found in molecular structure %READC-ERR: atom 84 VAL 1HG1 not found in molecular structure %READC-ERR: atom 84 VAL 2HG1 not found in molecular structure %READC-ERR: atom 84 VAL 3HG1 not found in molecular structure %READC-ERR: atom 84 VAL 1HG2 not found in molecular structure %READC-ERR: atom 84 VAL 2HG2 not found in molecular structure %READC-ERR: atom 84 VAL 3HG2 not found in molecular structure %READC-ERR: atom 84 VAL QQG not found in molecular structure %READC-ERR: atom 85 THR QG2 not found in molecular structure %READC-ERR: atom 85 THR 1HG2 not found in molecular structure %READC-ERR: atom 85 THR 2HG2 not found in molecular structure %READC-ERR: atom 85 THR 3HG2 not found in molecular structure %READC-ERR: atom 86 GLY 1HA not found in molecular structure %READC-ERR: atom 86 GLY 2HA not found in molecular structure %READC-ERR: atom 86 GLY QA not found in molecular structure %READC-ERR: atom 87 GLY 1HA not found in molecular structure %READC-ERR: atom 87 GLY 2HA not found in molecular structure %READC-ERR: atom 87 GLY QA not found in molecular structure %READC-ERR: atom 88 ASN 2HB not found in molecular structure %READC-ERR: atom 88 ASN 3HB not found in molecular structure %READC-ERR: atom 88 ASN QB not found in molecular structure %READC-ERR: atom 88 ASN 1HD2 not found in molecular structure %READC-ERR: atom 88 ASN 2HD2 not found in molecular structure %READC-ERR: atom 88 ASN QD2 not found in molecular structure %READC-ERR: atom 89 GLU 2HB not found in molecular structure %READC-ERR: atom 89 GLU 3HB not found in molecular structure %READC-ERR: atom 89 GLU QB not found in molecular structure %READC-ERR: atom 89 GLU 2HG not found in molecular structure %READC-ERR: atom 89 GLU 3HG not found in molecular structure %READC-ERR: atom 89 GLU QG not found in molecular structure %READC-ERR: atom 90 ASP 2HB not found in molecular structure %READC-ERR: atom 90 ASP 3HB not found in molecular structure %READC-ERR: atom 90 ASP QB not found in molecular structure %READC-ERR: atom 90 ASP O not found in molecular structure COOR>END CNSsolve>END %CNS-ERR: "END" not allowed. "STOP" terminates program CNSsolve>parameter @TOPPAR:parallhdg5.3.pro end PARRDR>! JFD adds FES complex parameters from Milo Westler's calculations PARRDR>! and standard topology. PARRDR> PARRDR>remark file protein-allhdg-ucl.param version UCL date 07-JUL-01 PARRDR>remark for file protein-allhdg-ucl.top version UCL date 14-MAR-00 PARRDR>remark for file protein-allhdg-dih-ucl.top version UCL date 07-JUL-01 PARRDR>remark Geometric energy function parameters for distance geometry and PARRDR>remark simulated annealing. PARRDR>remark Original author: Michael Nilges, EMBL Heidelberg PARRDR>remark Modifications: Mark A. Williams, UCL London PARRDR> PARRDR>set echo off message off end SHOW: sum over selected elements = 2.000000 CNSsolve> CNSsolve> if ( $log_level = verbose ) then CNSsolve> set message=normal echo=on end CNSsolve> else CNSsolve> set message=off echo=off end CNSsolve> end if CNSsolve> CNSsolve> CNSsolve> identity (store1) (none) SELRPN: 0 atoms have been selected out of 1385 CNSsolve> CNSsolve> identity (store1) (&atom_build) SELRPN: 453 atoms have been selected out of 1385 CNSsolve> identity (store1) (store1 or hydrogen) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 692 atoms have been selected out of 1385 SHOW: sum over selected elements = 692.000000 CNSsolve> evaluate ($tobuild=$result) EVALUATE: symbol $TOBUILD set to 692.000 (real) CNSsolve> CNSsolve> !evaluate ($tobuild=0) CNSsolve> CNSsolve> if ( $tobuild > 0 ) then NEXTCD: condition evaluated as true CNSsolve> CNSsolve> fix selection=(not(store1)) end SELRPN: 693 atoms have been selected out of 1385 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 692 atoms have been selected out of 1385 SHOW: sum over selected elements = 692.000000 CNSsolve> evaluate ($moving=$result) EVALUATE: symbol $MOVING set to 692.000 (real) CNSsolve> CNSsolve> if ( $moving > 0 ) then NEXTCD: condition evaluated as true CNSsolve> for $id in id (tag and byres(store1)) loop avco SELRPN: 90 atoms have been selected out of 1385 FOR ID LOOP: symbol ID set to 1.00000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = 2.355556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.35556 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = 0.730667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.730667 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = -2.055111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.05511 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 20.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 5.055727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.05573 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -1.795545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.79555 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 0.707909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.707909 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 34.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 3.019091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.01909 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -5.602000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.60200 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 0.124273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.124273 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 49.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 7.203800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.20380 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -7.980000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.98000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 1.679000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.67900 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 65.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1385 SHOW: average of selected elements = 5.349316 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.34932 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1385 SHOW: average of selected elements = -13.186053 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.1861 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1385 SHOW: average of selected elements = 1.458684 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.45868 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 86.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 9.109300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.10930 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -13.443600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.4436 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 5.286700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.28670 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 98.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 7.042091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.04209 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -17.380636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.3806 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 3.655000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.65500 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 117.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 10.030455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.0305 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -21.444636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.4446 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 5.367545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.36755 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 132.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 9.924455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.92445 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -23.272364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -23.2724 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 1.370545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.37055 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 151.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 9.130455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.13045 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -27.370091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -27.3701 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 3.395182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.39518 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 165.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 9.492000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.49200 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -30.680636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -30.6806 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 1.453909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.45391 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 179.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 7.549100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.54910 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -34.663100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -34.6631 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 2.116900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.11690 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 193.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1385 SHOW: average of selected elements = 10.792857 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.7929 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1385 SHOW: average of selected elements = -35.627286 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -35.6273 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1385 SHOW: average of selected elements = 1.209000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.20900 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 203.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 13.055636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.0556 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -32.945455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -32.9455 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 2.087182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.08718 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 217.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 13.476700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.4767 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -32.988600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -32.9886 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 6.599400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.59940 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 229.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1385 SHOW: average of selected elements = 17.408222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.4082 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1385 SHOW: average of selected elements = -28.233611 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -28.2336 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1385 SHOW: average of selected elements = 4.841556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.84156 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 249.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1385 SHOW: average of selected elements = 13.531500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.5315 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1385 SHOW: average of selected elements = -26.000125 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -26.0001 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1385 SHOW: average of selected elements = 5.809250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.80925 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 263.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 14.470600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 14.4706 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -22.703400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -22.7034 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 2.303400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.30340 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 280.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 14.255273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 14.2553 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -19.286909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.2869 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 5.198091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.19809 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 295.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 12.358000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.3580 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -17.214000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.2140 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -0.015727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.157273E-01 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 317.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 11.500091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.5001 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -12.555091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.5551 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 1.342636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.34264 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 339.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1385 SHOW: average of selected elements = 8.582368 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.58237 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1385 SHOW: average of selected elements = -14.946316 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.9463 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1385 SHOW: average of selected elements = -2.744158 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.74416 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 360.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1385 SHOW: average of selected elements = 5.561500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.56150 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1385 SHOW: average of selected elements = -10.559875 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.5599 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1385 SHOW: average of selected elements = -2.883875 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.88388 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 374.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1385 SHOW: average of selected elements = 2.130571 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.13057 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1385 SHOW: average of selected elements = -10.014714 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.0147 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1385 SHOW: average of selected elements = -0.741571 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.741571 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 384.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = 1.092200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.09220 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -9.607600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.60760 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -4.052000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.05200 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 391.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 2.373200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.37320 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -11.884300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.8843 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -6.282800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.28280 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 408.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = 0.157889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.157889 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = -14.915778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.9158 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = -7.456111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.45611 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 419.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -0.220636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.220636 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -19.053636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.0536 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -4.730091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.73009 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 438.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -1.153500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -1.15350 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -19.460400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.4604 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -9.377200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.37720 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 452.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 3.397900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.39790 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -17.464900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.4649 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -10.020600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.0206 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 464.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 4.347182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.34718 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -18.884455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.8845 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -5.520000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.52000 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 483.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 1.900545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.90055 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -22.985636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -22.9856 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -7.675364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.67536 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 505.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 4.089364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.08936 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -22.292273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -22.2923 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -11.306636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.3066 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 527.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 9.142000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.14200 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -20.886909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -20.8869 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -8.398727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.39873 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 549.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 7.686455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.68645 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -24.126273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -24.1263 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -5.609182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.60918 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 568.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 5.701545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.70155 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -26.107000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -26.1070 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -9.619000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.61900 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 583.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 10.669091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.6691 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -24.880000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -24.8800 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -11.801455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.8015 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 602.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 11.988600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.9886 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -26.284600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -26.2846 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -7.710800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.71080 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 618.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 9.326300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.32630 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -29.554900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -29.5549 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -7.700300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.70030 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 634.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = 9.632000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.63200 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -30.337000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -30.3370 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -11.251400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.2514 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 641.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 6.685727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 6.68573 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -31.588727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -31.5887 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -10.546182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.5462 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 655.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 2.831636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.83164 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -31.082273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -31.0823 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -12.487909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.4879 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 669.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 0.277700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.277700 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -27.977600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -27.9776 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -10.991500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.9915 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 685.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -2.353400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.35340 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -31.568100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -31.5681 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -11.081500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.0815 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 697.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = 1.115111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.11511 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = -33.700556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -33.7006 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = -9.092111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.09211 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 708.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 2.310900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.31090 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -29.849400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -29.8494 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -6.584500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.58450 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 725.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1385 SHOW: average of selected elements = -1.588429 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -1.58843 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1385 SHOW: average of selected elements = -30.131214 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -30.1312 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1385 SHOW: average of selected elements = -3.613714 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.61371 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 749.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 1.174455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.17445 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -26.592545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -26.5925 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -1.595364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.59536 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 768.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 0.143818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.143818 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -27.769091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -27.7691 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 2.324818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.32482 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 785.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -0.805091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.805091 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -22.956909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -22.9569 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 4.745182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.74518 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 804.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1385 SHOW: average of selected elements = 0.039944 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.399444E-01 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1385 SHOW: average of selected elements = -26.313667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -26.3137 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1385 SHOW: average of selected elements = 8.197833 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.19783 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 824.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -0.075000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.750000E-01 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -21.117200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.1172 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 10.788300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 10.7883 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 836.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = 1.361400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.36140 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -21.071200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.0712 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = 14.522000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 14.5220 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 843.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -1.343500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -1.34350 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -22.939200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -22.9392 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 15.603200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 15.6032 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 855.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -0.587000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.587000 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -27.454000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -27.4540 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 15.230500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 15.2305 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 867.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -3.896727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.89673 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -27.402909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -27.4029 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 13.059000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 13.0590 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 884.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -3.933000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.93300 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -26.617545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -26.6175 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 7.876909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.87691 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 903.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -4.470273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.47027 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -22.901455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -22.9015 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 9.528545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.52855 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 925.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -4.572800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.57280 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -23.656400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -23.6564 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = 5.039800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.03980 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 932.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -5.494455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -5.49445 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -25.385091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -25.3851 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 0.698364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.698364 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 947.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -2.104909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.10491 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -23.113273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -23.1133 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -0.646545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.646545 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 966.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -3.608818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.60882 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -24.200727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -24.2007 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -4.720727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.72073 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 980.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -4.764700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.76470 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -20.565100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -20.5651 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -4.525500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.52550 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 992.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -4.353200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.35320 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -17.127000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.1270 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -7.109200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.10920 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 999.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1385 SHOW: average of selected elements = -6.891286 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.89129 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1385 SHOW: average of selected elements = -15.663857 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.6639 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1385 SHOW: average of selected elements = -7.831857 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.83186 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1009.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -6.373000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.37300 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -14.607636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.6076 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -4.572455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.57245 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1031.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = -3.424111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.42411 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = -11.721556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.7216 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = -3.204444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.20444 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1042.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -0.068818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.688182E-01 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -14.320818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.3208 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -1.040545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.04055 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1061.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -2.960091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.96009 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -10.102636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.1026 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 2.083545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.08355 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1083.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -6.468300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.46830 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -12.003400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.0034 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 0.066300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.663000E-01 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1095.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -4.670545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.67055 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -16.226545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.2265 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 0.108091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.108091 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1114.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -3.691600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.69160 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -15.086000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.0860 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = 4.168200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.16820 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1121.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -0.364200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.364200 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -16.041000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.0410 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 3.472500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.47250 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1137.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1385 SHOW: average of selected elements = -0.866857 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.866857 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1385 SHOW: average of selected elements = -12.864286 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.8643 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1385 SHOW: average of selected elements = 7.480643 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.48064 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1161.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 4.490000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.49000 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -12.469200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.4692 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 7.678700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.67870 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1173.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = 6.093000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 6.09300 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -16.269800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.2698 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = 8.629400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.62940 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1180.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1385 SHOW: average of selected elements = 1.590895 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.59089 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1385 SHOW: average of selected elements = -17.512737 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.5127 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1385 SHOW: average of selected elements = 7.733000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.73300 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1201.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1385 SHOW: average of selected elements = 5.862143 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.86214 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1385 SHOW: average of selected elements = -21.716429 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.7164 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1385 SHOW: average of selected elements = 8.352071 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.35207 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1225.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 5.030818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.03082 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -22.989818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -22.9898 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 2.568545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.56855 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1244.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1385 SHOW: average of selected elements = 4.716438 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.71644 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1385 SHOW: average of selected elements = -29.258625 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -29.2586 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1385 SHOW: average of selected elements = 2.955188 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.95519 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1262.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1385 SHOW: average of selected elements = 5.783286 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.78329 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1385 SHOW: average of selected elements = -29.195714 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -29.1957 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1385 SHOW: average of selected elements = -0.256143 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.256143 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1272.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 3.971800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.97180 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -32.411400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -32.4114 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -1.595200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.59520 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1288.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 5.671600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.67160 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -34.866500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -34.8665 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -4.396800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.39680 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1300.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 1.309500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.30950 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -36.128700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -36.1287 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -6.083300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.08330 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1316.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 3.918727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.91873 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -37.463909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -37.4639 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -9.373455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.37345 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1330.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = 5.406800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.40680 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -39.558000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -39.5580 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -6.174600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.17460 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1337.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = 3.648800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.64880 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -40.921800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -40.9218 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -4.365800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.36580 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1344.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 5.965200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.96520 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -40.169300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -40.1693 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -1.140000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.14000 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1358.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 4.275818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.27582 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -40.082909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -40.0829 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 2.866909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.86691 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1373.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = 0.368222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.368222 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = -42.153444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -42.1534 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = 1.065889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.06589 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) CNSsolve> evaluate ($ave_x=$result) CNSsolve> show ave(y) (byres(id $id) and known) CNSsolve> evaluate ($ave_y=$result) CNSsolve> show ave(z) (byres(id $id) and known) CNSsolve> evaluate ($ave_z=$result) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) CNSsolve> do (y=$ave_y) (byres(id $id) and store1) CNSsolve> do (z=$ave_z) (byres(id $id) and store1) CNSsolve> CNSsolve> end loop avco CNSsolve> CNSsolve> do (x=x+random(2.0)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> do (y=y+random(2.0)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> do (z=z+random(2.0)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> CNSsolve> {- start parameter for the side chain building -} CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=20. nbxmod=-2 repel=0.9 wmin=0.1 tolerance=1. NBDSET> rexp=2 irexp=2 inhibit=0.25 NBDSET> end PARRDR> end CNSsolve> CNSsolve> {- Friction coefficient, in 1/ps. -} CNSsolve> do (fbeta=100) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> CNSsolve> evaluate ($bath=300.0) EVALUATE: symbol $BATH set to 300.000 (real) CNSsolve> evaluate ($nstep=500) EVALUATE: symbol $NSTEP set to 500.000 (real) CNSsolve> evaluate ($timestep=0.0005) EVALUATE: symbol $TIMESTEP set to 0.500000E-03 (real) CNSsolve> CNSsolve> do (refy=mass) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> CNSsolve> do (mass=20) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> CNSsolve> igroup interaction SELRPN> (store1) (store1 or known) SELRPN: 692 atoms have been selected out of 1385 SELRPN: 1385 atoms have been selected out of 1385 IGROup> end CNSsolve> CNSsolve> {- turn on initial energy terms -} CNSsolve> flags exclude * include bond angle vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2076 NBONDS: generating intra-molecular exclusion list with mode=-2 MAKINB: mode -2 found 692 exclusions and 0 interactions(1-4) %atoms " -13 -ALA -HN " and " -13 -ALA -HB3 " only 0.10 A apart %atoms " -32 -LYS -HE1 " and " -32 -LYS -HZ3 " only 0.05 A apart %atoms " -33 -LYS -HB1 " and " -33 -LYS -HG1 " only 0.09 A apart %atoms " -34 -LYS -HB1 " and " -34 -LYS -HE1 " only 0.10 A apart %atoms " -47 -ARG -HA " and " -47 -ARG -HD1 " only 0.07 A apart %atoms " -47 -ARG -HA " and " -47 -ARG -HD2 " only 0.09 A apart %atoms " -47 -ARG -HD1 " and " -47 -ARG -HD2 " only 0.07 A apart %atoms " -48 -ILE -HG21" and " -48 -ILE -HG22" only 0.10 A apart %atoms " -58 -LYS -HA " and " -58 -LYS -HZ3 " only 0.08 A apart %atoms " -61 -LEU -HD13" and " -61 -LEU -HD23" only 0.07 A apart %atoms " -66 -LYS -HA " and " -66 -LYS -HB1 " only 0.10 A apart %atoms " -68 -LEU -HB1 " and " -68 -LEU -HD22" only 0.07 A apart %atoms " -71 -LEU -HG " and " -71 -LEU -HD22" only 0.03 A apart NBONDS: found 91410 intra-atom interactions NBONDS: found 13 nonbonded violations NBONDS: found 90605 intra-atom interactions %atoms " -21 -LYS -HE2 " and " -21 -LYS -NZ " only 0.09 A apart NBONDS: found 87778 intra-atom interactions NBONDS: found 1 nonbonded violations NBONDS: found 85803 intra-atom interactions NBONDS: found 86187 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0000 ----------------------- | Etotal =357620.322 grad(E)=587.066 E(BOND)=50273.158 E(ANGL)=174047.201 | | E(VDW )=133299.963 | ------------------------------------------------------------------------------- NBONDS: found 86536 intra-atom interactions NBONDS: found 86516 intra-atom interactions NBONDS: found 86422 intra-atom interactions NBONDS: found 86522 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0000 ----------------------- | Etotal =129804.344 grad(E)=343.087 E(BOND)=19743.846 E(ANGL)=45793.180 | | E(VDW )=64267.319 | ------------------------------------------------------------------------------- NBONDS: found 86486 intra-atom interactions NBONDS: found 86534 intra-atom interactions NBONDS: found 86438 intra-atom interactions --------------- cycle= 30 ------ stepsize= -0.0001 ----------------------- | Etotal =111691.816 grad(E)=316.394 E(BOND)=17124.583 E(ANGL)=35914.919 | | E(VDW )=58652.314 | ------------------------------------------------------------------------------- --------------- cycle= 40 ------ stepsize= 0.0003 ----------------------- | Etotal =111162.584 grad(E)=314.743 E(BOND)=16806.973 E(ANGL)=35897.791 | | E(VDW )=58457.821 | ------------------------------------------------------------------------------- NBONDS: found 86458 intra-atom interactions NBONDS: found 86464 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0003 ----------------------- | Etotal =109598.054 grad(E)=314.030 E(BOND)=16956.942 E(ANGL)=35022.331 | | E(VDW )=57618.781 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> CNSsolve> flags exclude vdw include impr end CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=456673.415 E(kin)=620.050 temperature=300.601 | | Etotal =456053.365 grad(E)=661.261 E(BOND)=16956.942 E(ANGL)=35022.331 | | E(IMPR)=404074.092 | ------------------------------------------------------------------------------- -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=296947.996 E(kin)=46525.530 temperature=22555.599 | | Etotal =250422.467 grad(E)=389.347 E(BOND)=34247.052 E(ANGL)=92605.824 | | E(IMPR)=123569.591 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 3.48474 -22.00847 -0.70329 velocity [A/ps] : 0.68255 -3.46860 0.62327 ang. mom. [amu A/ps] :-326603.01574-160621.71888-214745.06241 kin. ener. [Kcal/mol] : 213.11675 CNSsolve> CNSsolve> flags include vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2076 NBONDS: found 86209 intra-atom interactions NBONDS: found 85813 intra-atom interactions NBONDS: found 86168 intra-atom interactions NBONDS: found 86118 intra-atom interactions NBONDS: found 86198 intra-atom interactions --------------- cycle= 10 ------ stepsize= -0.0001 ----------------------- | Etotal =228183.873 grad(E)=377.087 E(BOND)=30795.062 E(ANGL)=53202.666 | | E(IMPR)=104993.047 E(VDW )=39193.097 | ------------------------------------------------------------------------------- NBONDS: found 86375 intra-atom interactions NBONDS: found 86533 intra-atom interactions NBONDS: found 86461 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0000 ----------------------- | Etotal =158173.053 grad(E)=267.173 E(BOND)=17160.108 E(ANGL)=27944.958 | | E(IMPR)=76345.777 E(VDW )=36722.211 | ------------------------------------------------------------------------------- NBONDS: found 86423 intra-atom interactions NBONDS: found 86386 intra-atom interactions NBONDS: found 86357 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0004 ----------------------- | Etotal =133807.964 grad(E)=278.679 E(BOND)=16403.631 E(ANGL)=27402.491 | | E(IMPR)=53682.272 E(VDW )=36319.570 | ------------------------------------------------------------------------------- NBONDS: found 86442 intra-atom interactions NBONDS: found 86449 intra-atom interactions NBONDS: found 86456 intra-atom interactions --------------- cycle= 40 ------ stepsize= 0.0005 ----------------------- | Etotal =102680.235 grad(E)=261.803 E(BOND)=15252.991 E(ANGL)=15705.530 | | E(IMPR)=38051.773 E(VDW )=33669.941 | ------------------------------------------------------------------------------- NBONDS: found 86452 intra-atom interactions NBONDS: found 86525 intra-atom interactions NBONDS: found 86456 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0006 ----------------------- | Etotal =92806.972 grad(E)=257.973 E(BOND)=14199.571 E(ANGL)=13416.592 | | E(IMPR)=32022.269 E(VDW )=33168.539 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=93442.377 E(kin)=635.406 temperature=308.045 | | Etotal =92806.972 grad(E)=257.973 E(BOND)=14199.571 E(ANGL)=13416.592 | | E(IMPR)=32022.269 E(VDW )=33168.539 | ------------------------------------------------------------------------------- NBONDS: found 86479 intra-atom interactions NBONDS: found 86519 intra-atom interactions -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=89970.721 E(kin)=2852.617 temperature=1382.950 | | Etotal =87118.103 grad(E)=258.246 E(BOND)=14391.342 E(ANGL)=11074.971 | | E(IMPR)=28916.207 E(VDW )=32735.584 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 3.49997 -22.00489 -0.69862 velocity [A/ps] : -0.10348 0.40616 -0.02313 ang. mom. [amu A/ps] : -18485.86319 -8345.04328 -65369.20786 kin. ener. [Kcal/mol] : 2.91440 CNSsolve> CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=2. nbxmod=-3 repel=0.75 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=100 nprint=25 end POWELL: number of degrees of freedom= 2076 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 2276 exclusions and 0 interactions(1-4) NBONDS: found 84930 intra-atom interactions NBONDS: found 85349 intra-atom interactions NBONDS: found 85368 intra-atom interactions --------------- cycle= 25 ------ stepsize= 0.0000 ----------------------- | Etotal =31749.143 grad(E)=76.380 E(BOND)=1113.207 E(ANGL)=9549.573 | | E(IMPR)=21060.374 E(VDW )=25.988 | ------------------------------------------------------------------------------- --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =31595.084 grad(E)=74.060 E(BOND)=1109.919 E(ANGL)=9435.625 | | E(IMPR)=21024.397 E(VDW )=25.143 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=32194.919 E(kin)=599.836 temperature=290.801 | | Etotal =31595.083 grad(E)=74.060 E(BOND)=1109.919 E(ANGL)=9435.624 | | E(IMPR)=21024.397 E(VDW )=25.143 | ------------------------------------------------------------------------------- NBONDS: found 85441 intra-atom interactions NBONDS: found 85421 intra-atom interactions NBONDS: found 85402 intra-atom interactions NBONDS: found 85391 intra-atom interactions NBONDS: found 85364 intra-atom interactions NBONDS: found 85392 intra-atom interactions NBONDS: found 85385 intra-atom interactions NBONDS: found 85445 intra-atom interactions NBONDS: found 85436 intra-atom interactions NBONDS: found 85365 intra-atom interactions NBONDS: found 85342 intra-atom interactions NBONDS: found 85344 intra-atom interactions NBONDS: found 85371 intra-atom interactions NBONDS: found 85392 intra-atom interactions NBONDS: found 85389 intra-atom interactions NBONDS: found 85383 intra-atom interactions NBONDS: found 85362 intra-atom interactions NBONDS: found 85321 intra-atom interactions NBONDS: found 85361 intra-atom interactions NBONDS: found 85392 intra-atom interactions NBONDS: found 85395 intra-atom interactions NBONDS: found 85411 intra-atom interactions NBONDS: found 85392 intra-atom interactions NBONDS: found 85413 intra-atom interactions NBONDS: found 85433 intra-atom interactions NBONDS: found 85409 intra-atom interactions NBONDS: found 85400 intra-atom interactions NBONDS: found 85447 intra-atom interactions NBONDS: found 85462 intra-atom interactions NBONDS: found 85392 intra-atom interactions NBONDS: found 85357 intra-atom interactions NBONDS: found 85369 intra-atom interactions NBONDS: found 85382 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=4006.577 E(kin)=512.486 temperature=248.454 | | Etotal =3494.090 grad(E)=63.762 E(BOND)=274.181 E(ANGL)=2576.105 | | E(IMPR)=633.081 E(VDW )=10.724 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 3.50506 -22.01035 -0.69724 velocity [A/ps] : 0.07656 0.05514 0.18469 ang. mom. [amu A/ps] : -2079.72714 21356.78124 8248.68881 kin. ener. [Kcal/mol] : 0.71140 CNSsolve> CNSsolve> {- turn on all energy terms -} CNSsolve> flags include dihe ? end EFLAGS: the following energy flags are set EFLAGS: BOND ANGL DIHE IMPR VDW CNSsolve> CNSsolve> {- set repel to ~vdw radii -} CNSsolve> parameter PARRDR> nbonds NBDSET> repel=0.89 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=500 nprint=50 end POWELL: number of degrees of freedom= 2076 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 2276 exclusions and 0 interactions(1-4) NBONDS: found 85405 intra-atom interactions POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> flags exclude * include bond angl impr dihe vdw end CNSsolve> CNSsolve> {- return masses to something sensible -} CNSsolve> do (mass=refy) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=2880.328 E(kin)=617.141 temperature=299.190 | | Etotal =2263.187 grad(E)=48.145 E(BOND)=38.253 E(ANGL)=1251.572 | | E(DIHE)=73.674 E(IMPR)=826.514 E(VDW )=73.174 | ------------------------------------------------------------------------------- NBONDS: found 85367 intra-atom interactions NBONDS: found 85382 intra-atom interactions NBONDS: found 85371 intra-atom interactions NBONDS: found 85356 intra-atom interactions NBONDS: found 85342 intra-atom interactions NBONDS: found 85330 intra-atom interactions NBONDS: found 85354 intra-atom interactions NBONDS: found 85401 intra-atom interactions NBONDS: found 85419 intra-atom interactions NBONDS: found 85422 intra-atom interactions NBONDS: found 85411 intra-atom interactions NBONDS: found 85401 intra-atom interactions NBONDS: found 85386 intra-atom interactions NBONDS: found 85405 intra-atom interactions NBONDS: found 85415 intra-atom interactions NBONDS: found 85425 intra-atom interactions NBONDS: found 85438 intra-atom interactions NBONDS: found 85416 intra-atom interactions NBONDS: found 85396 intra-atom interactions NBONDS: found 85392 intra-atom interactions NBONDS: found 85395 intra-atom interactions NBONDS: found 85329 intra-atom interactions NBONDS: found 85289 intra-atom interactions NBONDS: found 85296 intra-atom interactions NBONDS: found 85388 intra-atom interactions NBONDS: found 85462 intra-atom interactions NBONDS: found 85441 intra-atom interactions NBONDS: found 85371 intra-atom interactions NBONDS: found 85328 intra-atom interactions NBONDS: found 85340 intra-atom interactions NBONDS: found 85368 intra-atom interactions NBONDS: found 85398 intra-atom interactions NBONDS: found 85408 intra-atom interactions NBONDS: found 85408 intra-atom interactions NBONDS: found 85443 intra-atom interactions NBONDS: found 85406 intra-atom interactions NBONDS: found 85386 intra-atom interactions NBONDS: found 85351 intra-atom interactions NBONDS: found 85302 intra-atom interactions NBONDS: found 85259 intra-atom interactions NBONDS: found 85226 intra-atom interactions NBONDS: found 85222 intra-atom interactions NBONDS: found 85229 intra-atom interactions NBONDS: found 85304 intra-atom interactions NBONDS: found 85342 intra-atom interactions NBONDS: found 85443 intra-atom interactions NBONDS: found 85474 intra-atom interactions NBONDS: found 85439 intra-atom interactions NBONDS: found 85406 intra-atom interactions NBONDS: found 85340 intra-atom interactions NBONDS: found 85294 intra-atom interactions NBONDS: found 85296 intra-atom interactions NBONDS: found 85355 intra-atom interactions NBONDS: found 85373 intra-atom interactions NBONDS: found 85399 intra-atom interactions NBONDS: found 85417 intra-atom interactions NBONDS: found 85426 intra-atom interactions NBONDS: found 85422 intra-atom interactions NBONDS: found 85371 intra-atom interactions NBONDS: found 85305 intra-atom interactions NBONDS: found 85267 intra-atom interactions NBONDS: found 85230 intra-atom interactions NBONDS: found 85232 intra-atom interactions NBONDS: found 85273 intra-atom interactions NBONDS: found 85305 intra-atom interactions NBONDS: found 85323 intra-atom interactions NBONDS: found 85341 intra-atom interactions NBONDS: found 85367 intra-atom interactions NBONDS: found 85361 intra-atom interactions NBONDS: found 85350 intra-atom interactions NBONDS: found 85337 intra-atom interactions NBONDS: found 85326 intra-atom interactions NBONDS: found 85330 intra-atom interactions NBONDS: found 85345 intra-atom interactions NBONDS: found 85362 intra-atom interactions NBONDS: found 85369 intra-atom interactions NBONDS: found 85386 intra-atom interactions NBONDS: found 85419 intra-atom interactions NBONDS: found 85362 intra-atom interactions NBONDS: found 85326 intra-atom interactions NBONDS: found 85293 intra-atom interactions NBONDS: found 85309 intra-atom interactions NBONDS: found 85328 intra-atom interactions NBONDS: found 85343 intra-atom interactions NBONDS: found 85378 intra-atom interactions NBONDS: found 85376 intra-atom interactions NBONDS: found 85327 intra-atom interactions NBONDS: found 85251 intra-atom interactions NBONDS: found 85236 intra-atom interactions NBONDS: found 85275 intra-atom interactions NBONDS: found 85317 intra-atom interactions NBONDS: found 85358 intra-atom interactions NBONDS: found 85408 intra-atom interactions NBONDS: found 85417 intra-atom interactions NBONDS: found 85389 intra-atom interactions NBONDS: found 85347 intra-atom interactions NBONDS: found 85292 intra-atom interactions NBONDS: found 85258 intra-atom interactions NBONDS: found 85265 intra-atom interactions NBONDS: found 85298 intra-atom interactions NBONDS: found 85342 intra-atom interactions NBONDS: found 85366 intra-atom interactions NBONDS: found 85374 intra-atom interactions NBONDS: found 85373 intra-atom interactions NBONDS: found 85375 intra-atom interactions NBONDS: found 85316 intra-atom interactions NBONDS: found 85313 intra-atom interactions NBONDS: found 85288 intra-atom interactions NBONDS: found 85296 intra-atom interactions NBONDS: found 85333 intra-atom interactions NBONDS: found 85338 intra-atom interactions NBONDS: found 85386 intra-atom interactions NBONDS: found 85421 intra-atom interactions NBONDS: found 85404 intra-atom interactions NBONDS: found 85351 intra-atom interactions NBONDS: found 85296 intra-atom interactions NBONDS: found 85305 intra-atom interactions NBONDS: found 85330 intra-atom interactions NBONDS: found 85332 intra-atom interactions NBONDS: found 85355 intra-atom interactions NBONDS: found 85385 intra-atom interactions NBONDS: found 85360 intra-atom interactions NBONDS: found 85337 intra-atom interactions NBONDS: found 85344 intra-atom interactions NBONDS: found 85351 intra-atom interactions NBONDS: found 85392 intra-atom interactions NBONDS: found 85391 intra-atom interactions NBONDS: found 85373 intra-atom interactions NBONDS: found 85348 intra-atom interactions NBONDS: found 85357 intra-atom interactions NBONDS: found 85384 intra-atom interactions NBONDS: found 85403 intra-atom interactions NBONDS: found 85379 intra-atom interactions NBONDS: found 85326 intra-atom interactions NBONDS: found 85294 intra-atom interactions NBONDS: found 85309 intra-atom interactions NBONDS: found 85346 intra-atom interactions NBONDS: found 85320 intra-atom interactions NBONDS: found 85302 intra-atom interactions NBONDS: found 85341 intra-atom interactions NBONDS: found 85380 intra-atom interactions NBONDS: found 85421 intra-atom interactions NBONDS: found 85442 intra-atom interactions NBONDS: found 85443 intra-atom interactions NBONDS: found 85417 intra-atom interactions NBONDS: found 85372 intra-atom interactions NBONDS: found 85348 intra-atom interactions NBONDS: found 85339 intra-atom interactions NBONDS: found 85328 intra-atom interactions NBONDS: found 85350 intra-atom interactions NBONDS: found 85423 intra-atom interactions NBONDS: found 85438 intra-atom interactions NBONDS: found 85451 intra-atom interactions NBONDS: found 85410 intra-atom interactions NBONDS: found 85351 intra-atom interactions NBONDS: found 85301 intra-atom interactions NBONDS: found 85256 intra-atom interactions NBONDS: found 85317 intra-atom interactions NBONDS: found 85382 intra-atom interactions NBONDS: found 85425 intra-atom interactions NBONDS: found 85433 intra-atom interactions NBONDS: found 85417 intra-atom interactions NBONDS: found 85374 intra-atom interactions NBONDS: found 85341 intra-atom interactions NBONDS: found 85351 intra-atom interactions NBONDS: found 85391 intra-atom interactions NBONDS: found 85417 intra-atom interactions NBONDS: found 85406 intra-atom interactions NBONDS: found 85387 intra-atom interactions NBONDS: found 85366 intra-atom interactions NBONDS: found 85354 intra-atom interactions NBONDS: found 85363 intra-atom interactions NBONDS: found 85339 intra-atom interactions NBONDS: found 85326 intra-atom interactions NBONDS: found 85310 intra-atom interactions NBONDS: found 85317 intra-atom interactions NBONDS: found 85333 intra-atom interactions NBONDS: found 85368 intra-atom interactions NBONDS: found 85405 intra-atom interactions NBONDS: found 85404 intra-atom interactions NBONDS: found 85373 intra-atom interactions NBONDS: found 85363 intra-atom interactions NBONDS: found 85394 intra-atom interactions NBONDS: found 85405 intra-atom interactions NBONDS: found 85374 intra-atom interactions NBONDS: found 85360 intra-atom interactions NBONDS: found 85360 intra-atom interactions NBONDS: found 85383 intra-atom interactions NBONDS: found 85388 intra-atom interactions NBONDS: found 85402 intra-atom interactions NBONDS: found 85390 intra-atom interactions NBONDS: found 85368 intra-atom interactions NBONDS: found 85351 intra-atom interactions NBONDS: found 85323 intra-atom interactions NBONDS: found 85287 intra-atom interactions NBONDS: found 85258 intra-atom interactions NBONDS: found 85237 intra-atom interactions NBONDS: found 85310 intra-atom interactions NBONDS: found 85334 intra-atom interactions NBONDS: found 85358 intra-atom interactions NBONDS: found 85374 intra-atom interactions NBONDS: found 85382 intra-atom interactions NBONDS: found 85372 intra-atom interactions NBONDS: found 85368 intra-atom interactions NBONDS: found 85350 intra-atom interactions NBONDS: found 85341 intra-atom interactions NBONDS: found 85328 intra-atom interactions NBONDS: found 85321 intra-atom interactions NBONDS: found 85299 intra-atom interactions NBONDS: found 85328 intra-atom interactions NBONDS: found 85360 intra-atom interactions NBONDS: found 85396 intra-atom interactions NBONDS: found 85416 intra-atom interactions NBONDS: found 85432 intra-atom interactions NBONDS: found 85432 intra-atom interactions NBONDS: found 85418 intra-atom interactions NBONDS: found 85393 intra-atom interactions NBONDS: found 85349 intra-atom interactions NBONDS: found 85323 intra-atom interactions NBONDS: found 85298 intra-atom interactions NBONDS: found 85286 intra-atom interactions NBONDS: found 85275 intra-atom interactions NBONDS: found 85271 intra-atom interactions NBONDS: found 85290 intra-atom interactions NBONDS: found 85315 intra-atom interactions NBONDS: found 85342 intra-atom interactions NBONDS: found 85367 intra-atom interactions NBONDS: found 85404 intra-atom interactions NBONDS: found 85420 intra-atom interactions NBONDS: found 85424 intra-atom interactions NBONDS: found 85435 intra-atom interactions NBONDS: found 85409 intra-atom interactions NBONDS: found 85382 intra-atom interactions NBONDS: found 85356 intra-atom interactions NBONDS: found 85315 intra-atom interactions NBONDS: found 85301 intra-atom interactions NBONDS: found 85287 intra-atom interactions NBONDS: found 85297 intra-atom interactions NBONDS: found 85292 intra-atom interactions NBONDS: found 85308 intra-atom interactions NBONDS: found 85317 intra-atom interactions NBONDS: found 85352 intra-atom interactions NBONDS: found 85368 intra-atom interactions NBONDS: found 85392 intra-atom interactions NBONDS: found 85401 intra-atom interactions NBONDS: found 85403 intra-atom interactions NBONDS: found 85381 intra-atom interactions NBONDS: found 85364 intra-atom interactions NBONDS: found 85329 intra-atom interactions NBONDS: found 85330 intra-atom interactions NBONDS: found 85325 intra-atom interactions NBONDS: found 85324 intra-atom interactions NBONDS: found 85332 intra-atom interactions NBONDS: found 85334 intra-atom interactions NBONDS: found 85373 intra-atom interactions NBONDS: found 85381 intra-atom interactions NBONDS: found 85382 intra-atom interactions NBONDS: found 85377 intra-atom interactions NBONDS: found 85360 intra-atom interactions NBONDS: found 85346 intra-atom interactions NBONDS: found 85319 intra-atom interactions NBONDS: found 85313 intra-atom interactions NBONDS: found 85311 intra-atom interactions NBONDS: found 85317 intra-atom interactions NBONDS: found 85317 intra-atom interactions NBONDS: found 85323 intra-atom interactions NBONDS: found 85380 intra-atom interactions NBONDS: found 85419 intra-atom interactions NBONDS: found 85424 intra-atom interactions NBONDS: found 85404 intra-atom interactions NBONDS: found 85377 intra-atom interactions NBONDS: found 85350 intra-atom interactions NBONDS: found 85318 intra-atom interactions NBONDS: found 85312 intra-atom interactions NBONDS: found 85360 intra-atom interactions NBONDS: found 85426 intra-atom interactions NBONDS: found 85455 intra-atom interactions NBONDS: found 85447 intra-atom interactions NBONDS: found 85396 intra-atom interactions NBONDS: found 85330 intra-atom interactions NBONDS: found 85293 intra-atom interactions NBONDS: found 85283 intra-atom interactions NBONDS: found 85311 intra-atom interactions NBONDS: found 85344 intra-atom interactions NBONDS: found 85352 intra-atom interactions NBONDS: found 85364 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=11174.563 E(kin)=2254.097 temperature=1092.787 | | Etotal =8920.467 grad(E)=148.027 E(BOND)=4881.824 E(ANGL)=1782.328 | | E(DIHE)=17.807 E(IMPR)=2120.474 E(VDW )=118.034 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 3.36584 -22.87041 -0.52607 velocity [A/ps] : 1.37691 -0.75485 1.23969 ang. mom. [amu A/ps] : 11023.89436 10915.28995 -16856.93318 kin. ener. [Kcal/mol] : 3.47981 CNSsolve> CNSsolve> {- some final minimisation -} CNSsolve> minimize powell POWELL> nstep=500 POWELL> drop=40.0 POWELL> nprint=50 POWELL> end POWELL: number of degrees of freedom= 2076 NBONDS: found 85359 intra-atom interactions NBONDS: found 85415 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =2502.411 grad(E)=52.753 E(BOND)=116.327 E(ANGL)=1479.401 | | E(DIHE)=17.803 E(IMPR)=812.463 E(VDW )=76.417 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> print thres=0.02 bonds (atom-i |atom-j ) dist. equil. delta energy const. ( 47 NE | 47 HE ) 1.145 0.980 0.165 27.118 1000.000 ( 74 NE | 74 HE ) 1.242 0.980 0.262 68.442 1000.000 ( 78 NE | 78 HE ) 1.120 0.980 0.140 19.585 1000.000 Number of violations greater 0.020: 3 RMS deviation= 0.013 CNSsolve> print thres=5. angles (atom-i |atom-j |atom-k ) angle equil. delta energy const. ( 47 CD | 47 NE | 47 HE ) 84.796 118.099 -33.303 168.923 500.000 ( 47 HE | 47 NE | 47 CZ ) 148.980 119.249 29.731 134.630 500.000 ( 74 CD | 74 NE | 74 HE ) 67.861 118.099 -50.238 384.407 500.000 ( 74 HE | 74 NE | 74 CZ ) 149.018 119.249 29.769 134.974 500.000 ( 78 CD | 78 NE | 78 HE ) 61.778 118.099 -56.320 483.120 500.000 ( 78 HE | 78 NE | 78 CZ ) 140.787 119.249 21.539 70.658 500.000 Number of violations greater 5.000: 6 RMS deviation= 2.476 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> fix selection=( none ) end SELRPN: 0 atoms have been selected out of 1385 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 0 atoms have been selected out of 1385 SHOW: zero atoms selected NEXTCD: condition evaluated as true SELRPN: 0 atoms have been selected out of 1385 CNSsolve> CNSsolve> if (&set_bfactor=true) then NEXTCD: condition evaluated as false CNSsolve> do (b=&bfactor) ( all ) CNSsolve> else CNSsolve> show ave(b) (known and not(store1)) SELRPN: 693 atoms have been selected out of 1385 SHOW: average of selected elements = 0.000000 CNSsolve> do (b=$result) (store1 and (attr b < 0.01)) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> end if CNSsolve> CNSsolve> if (&set_occupancy=true) then NEXTCD: condition evaluated as false CNSsolve> do (q=&occupancy) ( all ) CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 692 atoms have been selected out of 1385 SHOW: sum over selected elements = 692.000000 NEXTCD: condition evaluated as false CNSsolve> CNSsolve> set remarks=reset end CNSsolve> CNSsolve> buffer message BUFFER> to=remarks BUFFER> dump BUFFER> end CNSsolve> CNSsolve> write coordinates output=&coordinate_outfile end ASSFIL: file 1xxx_20_cns.pdb opened. CNSsolve> CNSsolve>stop HEAP: maximum use = 969580 current use = 0 bytes HEAP: maximum overhead = 968 current overhead = 64 bytes ============================================================ Maximum dynamic memory allocation: 969580 bytes Maximum dynamic memory overhead: 968 bytes Program started at: 17:57:28 on 3-Mar-04 Program stopped at: 17:57:48 on 3-Mar-04 CPU time used: 19.4900 seconds ============================================================