data_6056 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; Yeast oligosaccharyltransferase subunit Ost4p ; _BMRB_accession_number 6056 _BMRB_flat_file_name bmr6056.str _Entry_type original _Submission_date 2003-12-24 _Accession_date 2004-01-04 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Zubkov Sergey . . 2 Lennarz William J. . 3 Mohanty Sergey . . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 1 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 178 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2004-05-15 original author . stop_ _Original_release_date 2004-05-15 save_ ############################# # Citation for this entry # ############################# save_entry_citation _Saveframe_category entry_citation _Citation_full . _Citation_title ; Structural basis for the function of a minimembrane protein subunit of yeast oligosaccharyltransferase ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 15001703 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Zubkov Sergey . . 2 Lennarz William J. . 3 Mohanty Smita . . stop_ _Journal_abbreviation 'Proc. Natl. Acad. Sci. U. S. A.' _Journal_volume 101 _Journal_issue 11 _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first 3821 _Page_last 3826 _Year 2004 _Details . loop_ _Keyword 'membrane protein' glycosylaiton oligosaccharyltransferase stop_ save_ ####################################### # Cited references within the entry # ####################################### save_ref-1 _Saveframe_category citation _Citation_full ; Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A. J Biomol NMR. 1995 Nov;6(3):277-93 ; _Citation_title 'NMRPipe: a multidimensional spectral processing system based on UNIX pipes.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 8520220 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Delaglio F. . . 2 Grzesiek S. . . 3 Vuister 'G. W.' W. . 4 Zhu G. . . 5 Pfeifer J. . . 6 Bax A. . . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 6 _Journal_issue 3 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 277 _Page_last 293 _Year 1995 _Details ; The NMRPipe system is a UNIX software environment of processing, graphics, and analysis tools designed to meet current routine and research-oriented multidimensional processing requirements, and to anticipate and accommodate future demands and developments. The system is based on UNIX pipes, which allow programs running simultaneously to exchange streams of data under user control. In an NMRPipe processing scheme, a stream of spectral data flows through a pipeline of processing programs, each of which performs one component of the overall scheme, such as Fourier transformation or linear prediction. Complete multidimensional processing schemes are constructed as simple UNIX shell scripts. The processing modules themselves maintain and exploit accurate records of data sizes, detection modes, and calibration information in all dimensions, so that schemes can be constructed without the need to explicitly define or anticipate data sizes or storage details of real and imaginary channels during processing. The asynchronous pipeline scheme provides other substantial advantages, including high flexibility, favorable processing speeds, choice of both all-in-memory and disk-bound processing, easy adaptation to different data formats, simpler software development and maintenance, and the ability to distribute processing tasks on multi-CPU computers and computer networks. ; save_ save_ref-2 _Saveframe_category citation _Citation_full ; B. A. Johnson, R. A. Blevins J. Biomol. NMR 1994 4, 603-614 ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref-3 _Saveframe_category citation _Citation_full ; Guntert P, Mumenthaler C, Wuthrich K. J Mol Biol. 1997 Oct 17;273(1):283-98. ; _Citation_title 'Torsion angle dynamics for NMR structure calculation with the new program DYANA.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9367762 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Guntert P. . . 2 Mumenthaler C. . . 3 Wuthrich K. . . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of molecular biology' _Journal_volume 273 _Journal_issue 1 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 283 _Page_last 298 _Year 1997 _Details ; The new program DYANA (DYnamics Algorithm for Nmr Applications) for efficient calculation of three-dimensional protein and nucleic acid structures from distance constraints and torsion angle constraints collected by nuclear magnetic resonance (NMR) experiments performs simulated annealing by molecular dynamics in torsion angle space and uses a fast recursive algorithm to integrate the equations of motions. Torsion angle dynamics can be more efficient than molecular dynamics in Cartesian coordinate space because of the reduced number of degrees of freedom and the concomitant absence of high-frequency bond and angle vibrations, which allows for the use of longer time-steps and/or higher temperatures in the structure calculation. It also represents a significant advance over the variable target function method in torsion angle space with the REDAC strategy used by the predecessor program DIANA. DYANA computation times per accepted conformer in the "bundle" used to represent the NMR structure compare favorably with those of other presently available structure calculation algorithms, and are of the order of 160 seconds for a protein of 165 amino acid residues when using a DEC Alpha 8400 5/300 computer. Test calculations starting from conformers with random torsion angle values further showed that DYANA is capable of efficient calculation of high-quality protein structures with up to 400 amino acid residues, and of nucleic acid structures. ; save_ save_ref-4 _Saveframe_category citation _Citation_full ; Linge JP, Habeck M, Rieping W, Nilges M. Bioinformatics. 2003 Jan 22;19(2):315-6. ; _Citation_title 'ARIA: automated NOE assignment and NMR structure calculation.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 12538267 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Linge 'Jens P.' P. . 2 Habeck Michael . . 3 Rieping Wolfgang . . 4 Nilges Michael . . stop_ _Journal_abbreviation Bioinformatics _Journal_name_full 'Bioinformatics (Oxford, England)' _Journal_volume 19 _Journal_issue 2 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 315 _Page_last 316 _Year 2003 _Details ; MOTIVATION: In the light of several ongoing structural genomics projects, faster and more reliable methods for structure calculation from NMR data are in great demand. The major bottleneck in the determination of solution NMR structures is the assignment of NOE peaks (nuclear Overhauser effect). Due to the high complexity of the assignment problem, most NOEs cannot be directly converted into unambiguous inter-proton distance restraints. RESULTS: We present version 1.2 of our program ARIA (Ambiguous Restraints for Iterative Assignment) for automated assignment of NOE data and NMR structure calculation. We summarize recent progress in correcting for spin diffusion with a relaxation matrix approach, representing non-bonded interactions in the force field and refining final structures in explicit solvent. We also discuss book-keeping, data exchange with spectra assignment programs and deposition of the analysed experimental data to the databases. AVAILABILITY: ARIA 1.2 is available from: http://www.pasteur.fr/recherche/unites/Binfs/aria/. SUPPLEMENTARY INFORMATION: XML DTDs (for chemical shifts and NOE crosspeaks), Python scripts for the conversion of various NMR data formats and the results of example calculations using data from the S. cerevisiae HRDC domain are available from: http://www.pasteur.fr/recherche/unites/Binfs/aria/ ; save_ ################################## # Molecular system description # ################################## save_system_Ost4p _Saveframe_category molecular_system _Mol_system_name 'Yeast oligosaccharyltransferase subunit Ost4p' _Abbreviation_common Ost4p _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label ost4p $Ost4p stop_ _System_molecular_weight . _System_physical_state native _System_oligomer_state monomer _System_paramagnetic no _System_thiol_state 'not present' _Database_query_date . _Details . save_ ######################## # Monomeric polymers # ######################## save_Ost4p _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common 'yeast oligosaccharyltransferase subunit ost4p' _Abbreviation_common Ost4p _Molecular_mass . _Mol_thiol_state 'not present' _Details . ############################## # Polymer residue sequence # ############################## _Residue_count 36 _Mol_residue_sequence ; MISDEQLNSLAITFGIVMMT LIVIYHAVDSTMSPKN ; loop_ _Residue_seq_code _Residue_label 1 MET 2 ILE 3 SER 4 ASP 5 GLU 6 GLN 7 LEU 8 ASN 9 SER 10 LEU 11 ALA 12 ILE 13 THR 14 PHE 15 GLY 16 ILE 17 VAL 18 MET 19 MET 20 THR 21 LEU 22 ILE 23 VAL 24 ILE 25 TYR 26 HIS 27 ALA 28 VAL 29 ASP 30 SER 31 THR 32 MET 33 SER 34 PRO 35 LYS 36 ASN stop_ _Sequence_homology_query_date . _Sequence_homology_query_revised_last_date 2014-10-26 loop_ _Database_name _Database_accession_code _Database_entry_mol_name _Sequence_query_to_submitted_percentage _Sequence_subject_length _Sequence_identity _Sequence_positive _Sequence_homology_expectation_value PDB 1RKL "Nmr Structure Of Yeast Oligosaccharyltransferase Subunit Ost4p" 100.00 36 100.00 100.00 7.90e-16 DBJ GAA22023 "K7_Ost4p [Saccharomyces cerevisiae Kyokai no. 7]" 100.00 36 100.00 100.00 7.90e-16 EMBL CAA98811 "OST4 [Saccharomyces cerevisiae]" 100.00 36 100.00 100.00 7.90e-16 EMBL CAY79054 "Ost4p [Saccharomyces cerevisiae EC1118]" 100.00 36 100.00 100.00 7.90e-16 GB AAB06797 "OST4 [Saccharomyces cerevisiae]" 100.00 36 100.00 100.00 7.90e-16 GB AHY74787 "Ost4p [Saccharomyces cerevisiae YJM993]" 100.00 36 100.00 100.00 7.90e-16 GB EDN60132 "oligosaccharyltransferase [Saccharomyces cerevisiae YJM789]" 100.00 36 100.00 100.00 7.90e-16 GB EDV08487 "3.6 kDa protein [Saccharomyces cerevisiae RM11-1a]" 100.00 36 100.00 100.00 7.90e-16 GB EEU08972 "Ost4p [Saccharomyces cerevisiae JAY291]" 100.00 36 100.00 100.00 7.90e-16 REF NP_010049 "Ost4p [Saccharomyces cerevisiae S288c]" 100.00 36 100.00 100.00 7.90e-16 SP Q99380 "RecName: Full=Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit OST4; Short=Oligosaccharyl transferase sub" 100.00 36 100.00 100.00 7.90e-16 TPG DAA11634 "TPA: Ost4p [Saccharomyces cerevisiae S288c]" 100.00 36 100.00 100.00 7.90e-16 stop_ save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species $Ost4p 'Baker's yeast' 4932 Eukaryota Fungi Saccharomyces cerevisiae stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_name $Ost4p 'chemical synthesis' . . . . . stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_sample_1 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $Ost4p 1.0 mM . stop_ save_ ############################ # Computer software used # ############################ save_NMRPipe _Saveframe_category software _Name NMRPipe _Version 2.2 loop_ _Task processing stop_ _Details . _Citation_label $ref-1 save_ save_NMRView _Saveframe_category software _Name NMRView _Version 5.0.4 loop_ _Task 'data analysis' stop_ _Details . _Citation_label $ref-2 save_ save_CYANA _Saveframe_category software _Name CYANA _Version 1.0.6 loop_ _Task 'structure solution' stop_ _Details . _Citation_label $ref-3 save_ save_ARIA _Saveframe_category software _Name ARIA _Version 1.2 loop_ _Task refinement stop_ _Details . _Citation_label $ref-4 save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_spectrometer_1 _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model DMX _Field_strength 500 _Details . save_ save_spectrometer_2 _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model DMX _Field_strength 750 _Details . save_ ############################# # NMR applied experiments # ############################# save_2D_NOESY_1 _Saveframe_category NMR_applied_experiment _Experiment_name '2D NOESY' _Sample_label $sample_1 save_ save_2D_TOCSY_2 _Saveframe_category NMR_applied_experiment _Experiment_name '2D TOCSY' _Sample_label $sample_1 save_ save_2D_DQF-COSY_3 _Saveframe_category NMR_applied_experiment _Experiment_name '2D DQF-COSY' _Sample_label $sample_1 save_ ####################### # Sample conditions # ####################### save_sample_cond_1 _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH* 7.0 0.2 n/a temperature 298 1 K pressure 1 . atm stop_ save_ save_sample_cond_2 _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH* 7.0 0.2 n/a temperature 311 1 K pressure 1 . atm stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis _Indirect_shift_ratio DSS H 1 'methyl protons' ppm 0.0 internal direct . . . 1.0 stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_chemical_shift_set_1 _Saveframe_category assigned_chemical_shifts _Details . loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $sample_cond_2 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name ost4p _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 3 SER HA H 4.905 0.02 1 2 . 3 SER HB3 H 3.946 0.02 2 3 . 3 SER HB2 H 4.065 0.02 2 4 . 4 ASP H H 8.357 0.02 1 5 . 4 ASP HB3 H 3.059 0.02 2 6 . 4 ASP HB2 H 2.918 0.02 2 7 . 5 GLU HA H 4.710 0.02 1 8 . 5 GLU HB3 H 2.361 0.02 2 9 . 5 GLU HB2 H 2.246 0.02 2 10 . 5 GLU HG3 H 2.835 0.02 2 11 . 5 GLU HG2 H 2.751 0.02 2 12 . 6 GLN HA H 4.356 0.02 1 13 . 6 GLN HB3 H 2.309 0.02 2 14 . 6 GLN HB2 H 2.436 0.02 2 15 . 6 GLN HG3 H 2.711 0.02 1 16 . 6 GLN HG2 H 2.711 0.02 1 17 . 7 LEU H H 8.758 0.02 1 18 . 7 LEU HA H 4.265 0.02 1 19 . 7 LEU HB3 H 1.798 0.02 2 20 . 7 LEU HB2 H 1.794 0.02 2 21 . 7 LEU HG H 1.447 0.02 1 22 . 7 LEU HD1 H 1.111 0.02 2 23 . 7 LEU HD2 H 1.128 0.02 2 24 . 8 ASN H H 8.356 0.02 1 25 . 8 ASN HA H 4.681 0.02 1 26 . 8 ASN HB3 H 3.052 0.02 2 27 . 8 ASN HB2 H 2.907 0.02 2 28 . 8 ASN HD21 H 7.254 0.02 2 29 . 8 ASN HD22 H 6.946 0.02 2 30 . 9 SER HA H 4.372 0.02 1 31 . 9 SER HB3 H 4.153 0.02 2 32 . 9 SER HB2 H 4.229 0.02 2 33 . 10 LEU H H 8.222 0.02 1 34 . 10 LEU HA H 4.266 0.02 1 35 . 10 LEU HB3 H 1.923 0.02 2 36 . 10 LEU HB2 H 2.065 0.02 2 37 . 10 LEU HD1 H 1.111 0.02 2 38 . 11 ALA H H 8.219 0.02 1 39 . 11 ALA HA H 4.241 0.02 1 40 . 11 ALA HB H 2.565 0.02 1 41 . 12 ILE H H 8.352 0.02 1 42 . 12 ILE HA H 4.011 0.02 1 43 . 12 ILE HB H 2.157 0.02 1 44 . 12 ILE HG13 H 1.289 0.02 1 45 . 12 ILE HG12 H 1.331 0.02 1 46 . 12 ILE HD1 H 1.155 0.02 1 47 . 12 ILE HG2 H 1.138 0.02 1 48 . 13 THR H H 8.097 0.02 1 49 . 13 THR HA H 4.008 0.02 1 50 . 13 THR HB H 4.532 0.02 1 51 . 13 THR HG2 H 1.436 0.02 1 52 . 14 PHE H H 8.814 0.02 1 53 . 14 PHE HA H 4.387 0.02 1 54 . 14 PHE HB3 H 3.451 0.02 1 55 . 14 PHE HB2 H 3.451 0.02 1 56 . 14 PHE HD1 H 7.430 0.02 1 57 . 14 PHE HE1 H 7.474 0.02 1 58 . 14 PHE HZ H 7.606 0.02 1 59 . 14 PHE HE2 H 7.474 0.02 1 60 . 14 PHE HD2 H 7.430 0.02 1 61 . 15 GLY H H 8.554 0.02 1 62 . 15 GLY HA3 H 4.105 0.02 1 63 . 15 GLY HA2 H 4.105 0.02 1 64 . 16 ILE H H 8.566 0.02 1 65 . 16 ILE HA H 3.981 0.02 1 66 . 16 ILE HB H 2.283 0.02 1 67 . 16 ILE HG13 H 2.070 0.02 1 68 . 16 ILE HG12 H 2.075 0.02 1 69 . 16 ILE HD1 H 1.384 0.02 1 70 . 16 ILE HG2 H 1.137 0.02 1 71 . 17 VAL H H 8.619 0.02 1 72 . 17 VAL HA H 3.723 0.02 1 73 . 17 VAL HB H 2.400 0.02 1 74 . 17 VAL HG2 H 1.131 0.02 1 75 . 17 VAL HG1 H 1.290 0.02 1 76 . 18 MET H H 8.641 0.02 1 77 . 18 MET HA H 4.361 0.02 1 78 . 18 MET HB3 H 2.217 0.02 1 79 . 18 MET HB2 H 2.217 0.02 1 80 . 18 MET HG3 H 2.491 0.02 1 81 . 18 MET HG2 H 2.491 0.02 1 82 . 19 MET H H 8.655 0.02 1 83 . 19 MET HA H 4.338 0.02 1 84 . 19 MET HB3 H 2.317 0.02 2 85 . 19 MET HB2 H 2.435 0.02 2 86 . 19 MET HG3 H 2.801 0.02 1 87 . 19 MET HG2 H 2.801 0.02 1 88 . 20 THR H H 8.288 0.02 1 89 . 20 THR HA H 3.999 0.02 1 90 . 20 THR HB H 4.657 0.02 1 91 . 20 THR HG2 H 1.457 0.02 1 92 . 21 LEU H H 8.362 0.02 1 93 . 21 LEU HA H 4.185 0.02 1 94 . 21 LEU HB3 H 2.176 0.02 2 95 . 21 LEU HB2 H 2.270 0.02 2 96 . 21 LEU HG H 1.730 0.02 1 97 . 21 LEU HD1 H 1.092 0.02 1 98 . 21 LEU HD2 H 1.079 0.02 1 99 . 22 ILE H H 8.322 0.02 1 100 . 22 ILE HA H 3.904 0.02 1 101 . 22 ILE HB H 2.326 0.02 1 102 . 22 ILE HG13 H 2.174 0.02 1 103 . 22 ILE HG12 H 2.092 0.02 1 104 . 22 ILE HD1 H 1.334 0.02 1 105 . 22 ILE HG2 H 1.127 0.02 1 106 . 23 VAL H H 8.406 0.02 1 107 . 23 VAL HA H 3.824 0.02 1 108 . 23 VAL HB H 2.569 0.02 1 109 . 23 VAL HG2 H 1.331 0.02 1 110 . 23 VAL HG1 H 1.181 0.02 1 111 . 24 ILE H H 8.666 0.02 1 112 . 24 ILE HA H 3.874 0.02 1 113 . 24 ILE HB H 2.173 0.02 1 114 . 24 ILE HG13 H 1.474 0.02 1 115 . 24 ILE HG12 H 1.474 0.02 1 116 . 24 ILE HD1 H 1.068 0.02 1 117 . 24 ILE HG2 H 1.326 0.02 1 118 . 25 TYR H H 9.100 0.02 1 119 . 25 TYR HA H 4.325 0.02 1 120 . 25 TYR HB3 H 3.282 0.02 2 121 . 25 TYR HB2 H 3.404 0.02 2 122 . 25 TYR HD1 H 7.201 0.02 2 123 . 25 TYR HE1 H 6.898 0.02 1 124 . 25 TYR HE2 H 6.898 0.02 1 125 . 25 TYR HD2 H 7.202 0.02 2 126 . 26 HIS H H 8.752 0.02 1 127 . 26 HIS HA H 4.413 0.02 1 128 . 26 HIS HB3 H 3.625 0.02 1 129 . 26 HIS HB2 H 3.625 0.02 1 130 . 26 HIS HD2 H 7.645 0.02 1 131 . 26 HIS HE1 H 8.882 0.02 1 132 . 27 ALA H H 8.350 0.02 1 133 . 27 ALA HA H 4.314 0.02 1 134 . 27 ALA HB H 1.803 0.02 1 135 . 28 VAL H H 8.819 0.02 1 136 . 28 VAL HA H 3.812 0.02 1 137 . 28 VAL HB H 2.301 0.02 1 138 . 28 VAL HG2 H 1.252 0.02 2 139 . 28 VAL HG1 H 1.086 0.02 2 140 . 29 ASP H H 8.684 0.02 1 141 . 29 ASP HA H 4.584 0.02 1 142 . 29 ASP HB3 H 2.888 0.02 1 143 . 29 ASP HB2 H 2.888 0.02 1 144 . 30 SER H H 8.149 0.02 1 145 . 30 SER HA H 4.763 0.02 1 146 . 30 SER HB3 H 4.053 0.02 2 147 . 30 SER HB2 H 4.259 0.02 2 148 . 31 THR HA H 4.451 0.02 1 149 . 31 THR HB H 4.317 0.02 1 150 . 31 THR HG2 H 1.493 0.02 1 151 . 32 MET H H 8.726 0.02 1 152 . 32 MET HA H 4.394 0.02 1 153 . 32 MET HB3 H 2.305 0.02 1 154 . 32 MET HB2 H 2.305 0.02 1 155 . 33 SER H H 7.848 0.02 1 156 . 33 SER HA H 4.867 0.02 1 157 . 33 SER HB3 H 2.938 0.02 1 158 . 33 SER HB2 H 2.938 0.02 1 159 . 34 PRO HA H 4.635 0.02 1 160 . 34 PRO HB3 H 2.247 0.02 2 161 . 34 PRO HB2 H 2.532 0.02 2 162 . 34 PRO HG3 H 2.135 0.02 1 163 . 34 PRO HG2 H 2.135 0.02 1 164 . 34 PRO HD3 H 3.934 0.02 2 165 . 34 PRO HD2 H 4.037 0.02 2 166 . 35 LYS HA H 4.488 0.02 1 167 . 35 LYS HB3 H 2.045 0.02 1 168 . 35 LYS HB2 H 2.045 0.02 1 169 . 35 LYS HG3 H 1.853 0.02 1 170 . 35 LYS HG2 H 1.853 0.02 1 171 . 35 LYS HD3 H 1.919 0.02 1 172 . 35 LYS HD2 H 1.919 0.02 1 173 . 35 LYS HE3 H 3.360 0.02 1 174 . 35 LYS HE2 H 3.360 0.02 1 175 . 36 ASN H H 8.976 0.02 1 176 . 36 ASN HA H 4.760 0.02 1 177 . 36 ASN HB3 H 3.129 0.02 2 178 . 36 ASN HB2 H 3.066 0.02 2 stop_ save_