data_5691 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; Solution Structure of the 30S ribosomal protein S28E from Pyrococcus horikoshii. Northeast Structural Genomics Consortium target JR19 ; _BMRB_accession_number 5691 _BMRB_flat_file_name bmr5691.str _Entry_type original _Submission_date 2003-02-12 _Accession_date 2003-02-12 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Aramini James M. . 2 Cort John R. . 3 Huang Y. J. . 4 Xiao Rong . . 5 Acton Thomas B. . 6 Ho Chi K. . 7 Shih Liang-yu . . 8 Kennedy Micheal A. . 9 Montelione Gaetano T. . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 1 coupling_constants 1 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 441 "13C chemical shifts" 333 "15N chemical shifts" 76 "coupling constants" 45 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2009-07-13 update BMRB 'added time domain data' 2003-02-25 original author 'original release' stop_ save_ ############################# # Citation for this entry # ############################# save_entry_citation _Saveframe_category entry_citation _Citation_full . _Citation_title ; Solution NMR structure of the 30S ribosomal protein S28E from Pyrococcus horikoshii. ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 14627742 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Aramini James M. . 2 Huang Y. J. . 3 Cort John R. . 4 Goldsmith-Fischman S. . . 5 Xiao Rong . . 6 Shih Liang-yu . . 7 Ho Chi K. . 8 Liu J. . . 9 Rost B. . . 10 Honig B. . . 11 Kennedy M. A. . 12 Acton Thomas B. . 13 Montelione Gaetano T. . stop_ _Journal_abbreviation 'Protein Sci.' _Journal_volume 12 _Journal_issue 12 _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first 2823 _Page_last 2830 _Year 2003 _Details . loop_ _Keyword 'structural genomics' 'Northeast Structural Genomics Consortium' JR19 'ribosomal protein' stop_ save_ ####################################### # Cited references within the entry # ####################################### save_ref-1 _Saveframe_category citation _Citation_full 'Kawarabayasi et al. (1998) DNA Res. 5, 55-76' _Citation_title 'Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9679194 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Kawarabayasi Y. . . 2 Sawada M. . . 3 Horikawa H. . . 4 Haikawa Y. . . 5 Hino Y. . . 6 Yamamoto S. . . 7 Sekine M. . . 8 Baba S. . . 9 Kosugi H. . . 10 Hosoyama A. . . 11 Nagai Y. . . 12 Sakai M. . . 13 Ogura K. . . 14 Otsuka R. . . 15 Nakazawa H. . . 16 Takamiya M. . . 17 Ohfuku Y. . . 18 Funahashi T. . . 19 Tanaka T. . . 20 Kudoh Y. . . 21 Yamazaki J. . . 22 Kushida N. . . 23 Oguchi A. . . 24 Aoki K. . . 25 Kikuchi H. . . stop_ _Journal_abbreviation 'DNA Res.' _Journal_name_full 'DNA research : an international journal for rapid publication of reports on genes and genomes' _Journal_volume 5 _Journal_issue 2 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 55 _Page_last 76 _Year 1998 _Details ; The complete sequence of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3, has been determined by assembling the sequences of the physical map-based contigs of fosmid clones and of long polymerase chain reaction (PCR) products which were used for gap-filling. The entire length of the genome was 1,738,505 bp. The authenticity of the entire genome sequence was supported by restriction analysis of long PCR products, which were directly amplified from the genomic DNA. As the potential protein-coding regions, a total of 2061 open reading frames (ORFs) were assigned, and by similarity search against public databases, 406 (19.7%) were related to genes with putative function and 453 (22.0%) to the sequences registered but with unknown function. The remaining 1202 ORFs (58.3%) did not show any significant similarity to the sequences in the databases. Sequence comparison among the assigned ORFs in the genome provided evidence that a considerable number of ORFs were generated by sequence duplication. By similarity search, 11 ORFs were assumed to contain the intein elements. The RNA genes identified were a single 16S-23S rRNA operon, two 5S rRNA genes and 46 tRNA genes including two with the intron structure. All the assigned ORFs and RNA coding regions occupied 91.25% of the whole genome. The data presented in this paper are available on the internet at http:@www.nite.go.jp. ; save_ save_ref-2 _Saveframe_category citation _Citation_full ; Delaglio F., Grzesiek S., Vuister G.W., Zhu G., Pfeifer J., Bax A. J. Biomol. NMR. (1995) 6, 277-293. ; _Citation_title 'NMRPipe: a multidimensional spectral processing system based on UNIX pipes.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 8520220 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Delaglio F. . . 2 Grzesiek S. . . 3 Vuister 'G. W.' W. . 4 Zhu G. . . 5 Pfeifer J. . . 6 Bax A. . . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 6 _Journal_issue 3 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 277 _Page_last 293 _Year 1995 _Details ; The NMRPipe system is a UNIX software environment of processing, graphics, and analysis tools designed to meet current routine and research-oriented multidimensional processing requirements, and to anticipate and accommodate future demands and developments. The system is based on UNIX pipes, which allow programs running simultaneously to exchange streams of data under user control. In an NMRPipe processing scheme, a stream of spectral data flows through a pipeline of processing programs, each of which performs one component of the overall scheme, such as Fourier transformation or linear prediction. Complete multidimensional processing schemes are constructed as simple UNIX shell scripts. The processing modules themselves maintain and exploit accurate records of data sizes, detection modes, and calibration information in all dimensions, so that schemes can be constructed without the need to explicitly define or anticipate data sizes or storage details of real and imaginary channels during processing. The asynchronous pipeline scheme provides other substantial advantages, including high flexibility, favorable processing speeds, choice of both all-in-memory and disk-bound processing, easy adaptation to different data formats, simpler software development and maintenance, and the ability to distribute processing tasks on multi-CPU computers and computer networks. ; save_ save_ref-3 _Saveframe_category citation _Citation_full ; T. D. Goddard and D. G. Kneller, SPARKY 3, University of California, San Francisco. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref-4 _Saveframe_category citation _Citation_full ; Zimmerman D.E., Kulikowski C.A., Huang Y., Feng W., Tashiro M., Shimotakahara S., Chien C., Powers R., Montelione G.T. J. Mol. Biol. (1997) 269, 592-610 ; _Citation_title 'Automated analysis of protein NMR assignments using methods from artificial intelligence.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9217263 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Zimmerman 'D. E.' E. . 2 Kulikowski 'C. A.' A. . 3 Huang Y. . . 4 Feng W. . . 5 Tashiro M. . . 6 Shimotakahara S. . . 7 Chien C. . . 8 Powers R. . . 9 Montelione 'G. T.' T. . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of molecular biology' _Journal_volume 269 _Journal_issue 4 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 592 _Page_last 610 _Year 1997 _Details ; An expert system for determining resonance assignments from NMR spectra of proteins is described. Given the amino acid sequence, a two-dimensional 15N-1H heteronuclear correlation spectrum and seven to eight three-dimensional triple-resonance NMR spectra for seven proteins, AUTOASSIGN obtained an average of 98% of sequence-specific spin-system assignments with an error rate of less than 0.5%. Execution times on a Sparc 10 workstation varied from 16 seconds for smaller proteins with simple spectra to one to nine minutes for medium size proteins exhibiting numerous extra spin systems attributed to conformational isomerization. AUTOASSIGN combines symbolic constraint satisfaction methods with a domain-specific knowledge base to exploit the logical structure of the sequential assignment problem, the specific features of the various NMR experiments, and the expected chemical shift frequencies of different amino acids. The current implementation specializes in the analysis of data derived from the most sensitive of the currently available triple-resonance experiments. Potential extensions of the system for analysis of additional types of protein NMR data are also discussed. ; save_ save_ref-5 _Saveframe_category citation _Citation_full ; Huang, Y.J. (2001). Automated determination of protein structures from NMR data by iterative analysis of self-consistent contact patterns, PhD thesis, Rutgers University, New Brunswick, NJ. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref-6 _Saveframe_category citation _Citation_full 'see: www-nmr.cabm.rutgers.edu/NMRsoftware/nmr_software.html' _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref-7 _Saveframe_category citation _Citation_full ; Cornilescu, G., Delaglio, F., Bax, A. (1999) J. Biomol. NMR 13, 289-302. ; _Citation_title 'Protein backbone angle restraints from searching a database for chemical shift and sequence homology.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 10212987 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Cornilescu G. . . 2 Delaglio F. . . 3 Bax A. . . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 13 _Journal_issue 3 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 289 _Page_last 302 _Year 1999 _Details ; Chemical shifts of backbone atoms in proteins are exquisitely sensitive to local conformation, and homologous proteins show quite similar patterns of secondary chemical shifts. The inverse of this relation is used to search a database for triplets of adjacent residues with secondary chemical shifts and sequence similarity which provide the best match to the query triplet of interest. The database contains 13C alpha, 13C beta, 13C', 1H alpha and 15N chemical shifts for 20 proteins for which a high resolution X-ray structure is available. The computer program TALOS was developed to search this database for strings of residues with chemical shift and residue type homology. The relative importance of the weighting factors attached to the secondary chemical shifts of the five types of resonances relative to that of sequence similarity was optimized empirically. TALOS yields the 10 triplets which have the closest similarity in secondary chemical shift and amino acid sequence to those of the query sequence. If the central residues in these 10 triplets exhibit similar phi and psi backbone angles, their averages can reliably be used as angular restraints for the protein whose structure is being studied. Tests carried out for proteins of known structure indicate that the root-mean-square difference (rmsd) between the output of TALOS and the X-ray derived backbone angles is about 15 degrees. Approximately 3% of the predictions made by TALOS are found to be in error. ; save_ save_ref-8 _Saveframe_category citation _Citation_full ; Guntert P, Mumenthaler C, Wuthrich K. (1997) J. Mol. Biol. 273, 283-98. ; _Citation_title 'Torsion angle dynamics for NMR structure calculation with the new program DYANA.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9367762 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Guntert P. . . 2 Mumenthaler C. . . 3 Wuthrich K. . . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of molecular biology' _Journal_volume 273 _Journal_issue 1 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 283 _Page_last 298 _Year 1997 _Details ; The new program DYANA (DYnamics Algorithm for Nmr Applications) for efficient calculation of three-dimensional protein and nucleic acid structures from distance constraints and torsion angle constraints collected by nuclear magnetic resonance (NMR) experiments performs simulated annealing by molecular dynamics in torsion angle space and uses a fast recursive algorithm to integrate the equations of motions. Torsion angle dynamics can be more efficient than molecular dynamics in Cartesian coordinate space because of the reduced number of degrees of freedom and the concomitant absence of high-frequency bond and angle vibrations, which allows for the use of longer time-steps and/or higher temperatures in the structure calculation. It also represents a significant advance over the variable target function method in torsion angle space with the REDAC strategy used by the predecessor program DIANA. DYANA computation times per accepted conformer in the "bundle" used to represent the NMR structure compare favorably with those of other presently available structure calculation algorithms, and are of the order of 160 seconds for a protein of 165 amino acid residues when using a DEC Alpha 8400 5/300 computer. Test calculations starting from conformers with random torsion angle values further showed that DYANA is capable of efficient calculation of high-quality protein structures with up to 400 amino acid residues, and of nucleic acid structures. ; save_ save_ref-9 _Saveframe_category citation _Citation_full 'see: www-nmr.cabm.rutgers.edu/NMRsoftware/nmr_software.html' _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ ################################## # Molecular system description # ################################## save_RS28_PYRHO _Saveframe_category molecular_system _Mol_system_name '30S ribosomal protein S28E' _Abbreviation_common RS28_PYRHO _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label 'RS28_PYRHO, JR19' $JR19 stop_ _System_molecular_weight . _System_physical_state native _System_oligomer_state monomer _System_paramagnetic no _System_thiol_state 'not present' loop_ _Biological_function 'ribosomal protein' stop_ _Database_query_date . _Details . save_ ######################## # Monomeric polymers # ######################## save_JR19 _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common RS28_PYRHO _Abbreviation_common JR19 _Molecular_mass 9365 _Mol_thiol_state 'not present' _Details 'MW = 8086 without the C-tag' ############################## # Polymer residue sequence # ############################## _Residue_count 82 _Mol_residue_sequence ; MAEDEGYPAEVIEIIGRTGT TGDVTQVKVRILEGRDKGRV IRRNVRGPVRVGDILILRET EREAREIKSRRAAALEHHHH HH ; loop_ _Residue_seq_code _Residue_label 1 MET 2 ALA 3 GLU 4 ASP 5 GLU 6 GLY 7 TYR 8 PRO 9 ALA 10 GLU 11 VAL 12 ILE 13 GLU 14 ILE 15 ILE 16 GLY 17 ARG 18 THR 19 GLY 20 THR 21 THR 22 GLY 23 ASP 24 VAL 25 THR 26 GLN 27 VAL 28 LYS 29 VAL 30 ARG 31 ILE 32 LEU 33 GLU 34 GLY 35 ARG 36 ASP 37 LYS 38 GLY 39 ARG 40 VAL 41 ILE 42 ARG 43 ARG 44 ASN 45 VAL 46 ARG 47 GLY 48 PRO 49 VAL 50 ARG 51 VAL 52 GLY 53 ASP 54 ILE 55 LEU 56 ILE 57 LEU 58 ARG 59 GLU 60 THR 61 GLU 62 ARG 63 GLU 64 ALA 65 ARG 66 GLU 67 ILE 68 LYS 69 SER 70 ARG 71 ARG 72 ALA 73 ALA 74 ALA 75 LEU 76 GLU 77 HIS 78 HIS 79 HIS 80 HIS 81 HIS 82 HIS stop_ _Sequence_homology_query_date 2008-08-19 _Sequence_homology_query_revised_last_date 2008-08-19 loop_ _Database_name _Database_accession_code _Database_entry_mol_name _Sequence_query_to_submitted_percentage _Sequence_subject_length _Sequence_identity _Sequence_positive _Sequence_homology_expectation_value SWISS-PROT P61030 '30S ribosomal protein S28e' 86.59 71 100.00 100.00 1.46e-30 SWISS-PROT Q8U159 '30S ribosomal protein S28e' 86.59 71 98.59 100.00 2.24e-30 REF NP_579097 '30S ribosomal protein S28e [Pyrococcus furiosus DSM 3638]' 86.59 71 98.59 100.00 2.24e-30 SWISS-PROT P61029 '30S ribosomal protein S28e' 86.59 71 100.00 100.00 1.46e-30 REF NP_126358 '30S ribosomal protein S28e [Pyrococcus abyssi GE5]' 86.59 71 100.00 100.00 1.46e-30 REF NP_143359 '30S ribosomal protein S28e [Pyrococcus horikoshii OT3]' 86.59 71 100.00 100.00 1.46e-30 EMBL CAB49589 'rps28E SSU ribosomal protein S28E [Pyrococcus abyssi GE5]' 86.59 71 100.00 100.00 1.46e-30 GenBank AAL81492 'SSU ribosomal protein S28E; (rps28E) [Pyrococcus furiosus DSM 3638]' 86.59 71 98.59 100.00 2.24e-30 PDB 1NY4 'Solution Structure Of The 30s Ribosomal Protein S28e From Pyrococcus Horikoshii. Northeast Structural Genomics Consortium Target Jr19' 100.00 82 100.00 100.00 1.95e-37 DBJ BAA30603 '71aa long hypothetical 50S ribosomal protein S28 [Pyrococcus horikoshii OT3]' 86.59 71 100.00 100.00 1.46e-30 stop_ save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species _Gene_mnemonic $JR19 'P. horikoshii' 53953 Archaea . Pyrococcus horikoshii RPS28E stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_type _Vector_name $JR19 'recombinant technology' 'E. coli' Esherichia coli BL21pMgk plasmid pET21 stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_sample_1 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $JR19 1.0 mM '[U-100% 13C; U-100% 15N]' MES 20 mM . NaCl 100 mM . CaCl2 5 mM . DTT 10 mM . NaN3 0.02 % . D2O 5 % . stop_ save_ save_sample_2 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $JR19 1.0 mM '[U-100% 13C; U-100% 15N]' MES 20 mM . NaCl 100 mM . CaCl2 5 mM . DTT 10 mM . NaN3 0.02 % . D2O 100 % . stop_ save_ save_sample_3 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $JR19 1.0 mM '[U-5% 13C; U-100% 15N]' MES 20 mM . NaCl 100 mM . CaCl2 5 mM . DTT 10 mM . NaN3 0.02 % . D2O 5 % . stop_ save_ ############################ # Computer software used # ############################ save_VNMR _Saveframe_category software _Name VNMR _Version 6.1B loop_ _Task spectrometer acquisition stop_ _Details . save_ save_NMRPipe _Saveframe_category software _Name NMRPipe _Version 2.1 loop_ _Task 'data processing' stop_ _Details . _Citation_label $ref-2 save_ save_Sparky _Saveframe_category software _Name Sparky _Version 3.106 loop_ _Task 'peak picking' stop_ _Details . _Citation_label $ref-3 save_ save_AUTOASSIGN _Saveframe_category software _Name AUTOASSIGN _Version 1.9 loop_ _Task 'automated assignment of backbone 1H, 13C, 15N chemical shifts' stop_ _Details 'In-house developed software for automating the peak assignment process' _Citation_label $ref-4 save_ save_AUTOSTRUCTURE _Saveframe_category software _Name AUTOSTRUCTURE _Version 1.1.2 loop_ _Task 'automated NOESY assignment' 'structure determination' stop_ _Details ; In-house developed software for automating the NOESY assignment and structure determination process. Structure calculations were performed using DYANA. ; _Citation_label $ref-5 save_ save_HYPER _Saveframe_category software _Name HYPER _Version 3.2 loop_ _Task 'data analysis' stop_ _Details ; In-house developed software for the determination of dihedral angle restraints from NMR data. ; _Citation_label $ref-6 save_ save_TALOS _Saveframe_category software _Name TALOS _Version 2.1 loop_ _Task 'data analysis' stop_ _Details ; Determination of torsion angle restraints based on chemical shift data and sequence homology. ; _Citation_label $ref-7 save_ save_DYANA _Saveframe_category software _Name DYANA _Version 1.5 loop_ _Task 'structure refinement' stop_ _Details 'Structure refinement using torsion angle dynamics.' _Citation_label $ref-8 save_ save_PDBStat _Saveframe_category software _Name PDBStat _Version 3.27 loop_ _Task 'structure analysis' stop_ _Details 'In-house software for the analysis and superposition of the PDB structures.' _Citation_label $ref-9 save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_NMR_spectrometer_1 _Saveframe_category NMR_spectrometer _Manufacturer Varian _Model INOVA _Field_strength 800 _Details . save_ save_NMR_spectrometer_2 _Saveframe_category NMR_spectrometer _Manufacturer Varian _Model INOVA _Field_strength 750 _Details . save_ save_NMR_spectrometer_3 _Saveframe_category NMR_spectrometer _Manufacturer Varian _Model UNITY _Field_strength 600 _Details . save_ save_NMR_spectrometer_4 _Saveframe_category NMR_spectrometer _Manufacturer Varian _Model INOVA _Field_strength 600 _Details . save_ save_NMR_spectrometer_5 _Saveframe_category NMR_spectrometer _Manufacturer Varian _Model INOVA _Field_strength 500 _Details . save_ ############################# # NMR applied experiments # ############################# save_1H,15N-HSQC_(regular)_1 _Saveframe_category NMR_applied_experiment _Experiment_name '1H,15N-HSQC (regular)' _Sample_label . save_ save_1H,15N-HSQC_(NH2_only)_2 _Saveframe_category NMR_applied_experiment _Experiment_name '1H,15N-HSQC (NH2 only)' _Sample_label . save_ save_1H,15N-HSQC_(full_SW)_3 _Saveframe_category NMR_applied_experiment _Experiment_name '1H,15N-HSQC (full SW)' _Sample_label . save_ save_1H,13C-HSQC_(aliph)_4 _Saveframe_category NMR_applied_experiment _Experiment_name '1H,13C-HSQC (aliph)' _Sample_label . save_ save_1H,13C-HSQC_(arom)_5 _Saveframe_category NMR_applied_experiment _Experiment_name '1H,13C-HSQC (arom)' _Sample_label . save_ save_3D_1H-15N_NOESY_6 _Saveframe_category NMR_applied_experiment _Experiment_name '3D 1H-15N NOESY' _Sample_label . save_ save_3D_1H-13C_NOESY_(aliph)_7 _Saveframe_category NMR_applied_experiment _Experiment_name '3D 1H-13C NOESY (aliph)' _Sample_label . save_ save_3D_1H-13C_NOESY_(arom)_8 _Saveframe_category NMR_applied_experiment _Experiment_name '3D 1H-13C NOESY (arom)' _Sample_label . save_ save_4D_13C_NOESY_9 _Saveframe_category NMR_applied_experiment _Experiment_name '4D 13C NOESY' _Sample_label . save_ save_HNCO_10 _Saveframe_category NMR_applied_experiment _Experiment_name HNCO _Sample_label . save_ save_CBCA(CO)NH_11 _Saveframe_category NMR_applied_experiment _Experiment_name CBCA(CO)NH _Sample_label . save_ save_HNCACB_12 _Saveframe_category NMR_applied_experiment _Experiment_name HNCACB _Sample_label . save_ save_CBCACO(CA)HA_13 _Saveframe_category NMR_applied_experiment _Experiment_name CBCACO(CA)HA _Sample_label . save_ save_HA(CA)NH_14 _Saveframe_category NMR_applied_experiment _Experiment_name HA(CA)NH _Sample_label . save_ save_HA(CACO)NH_15 _Saveframe_category NMR_applied_experiment _Experiment_name HA(CACO)NH _Sample_label . save_ save_(H)CC(CO)NH_TOCSY_16 _Saveframe_category NMR_applied_experiment _Experiment_name '(H)CC(CO)NH TOCSY' _Sample_label . save_ save_H(CCCO)NH_TOCSY_17 _Saveframe_category NMR_applied_experiment _Experiment_name 'H(CCCO)NH TOCSY' _Sample_label . save_ save_HcCH_COSY_18 _Saveframe_category NMR_applied_experiment _Experiment_name 'HcCH COSY' _Sample_label . save_ save_HcCH_TOCSY_19 _Saveframe_category NMR_applied_experiment _Experiment_name 'HcCH TOCSY' _Sample_label . save_ save_HNHA_20 _Saveframe_category NMR_applied_experiment _Experiment_name HNHA _Sample_label . save_ save_1H,13C-HSQC_(high_res)_21 _Saveframe_category NMR_applied_experiment _Experiment_name '1H,13C-HSQC (high res)' _Sample_label . save_ save_H/D_exchange_(6_min)_22 _Saveframe_category NMR_applied_experiment _Experiment_name 'H/D exchange (6 min)' _Sample_label . save_ save_H/D_exchange_(60_min)_23 _Saveframe_category NMR_applied_experiment _Experiment_name 'H/D exchange (60 min)' _Sample_label . save_ save_H/D_exchange_(8_hrs)_24 _Saveframe_category NMR_applied_experiment _Experiment_name 'H/D exchange (8 hrs)' _Sample_label . save_ save_NMR_spectrometer_expt_1 _Saveframe_category NMR_applied_experiment _Experiment_name '1H,15N-HSQC (regular)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_2 _Saveframe_category NMR_applied_experiment _Experiment_name '1H,15N-HSQC (NH2 only)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_3 _Saveframe_category NMR_applied_experiment _Experiment_name '1H,15N-HSQC (full SW)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_4 _Saveframe_category NMR_applied_experiment _Experiment_name '1H,13C-HSQC (aliph)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_5 _Saveframe_category NMR_applied_experiment _Experiment_name '1H,13C-HSQC (arom)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_6 _Saveframe_category NMR_applied_experiment _Experiment_name '3D 1H-15N NOESY' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_7 _Saveframe_category NMR_applied_experiment _Experiment_name '3D 1H-13C NOESY (aliph)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_8 _Saveframe_category NMR_applied_experiment _Experiment_name '3D 1H-13C NOESY (arom)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_9 _Saveframe_category NMR_applied_experiment _Experiment_name '4D 13C NOESY' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_10 _Saveframe_category NMR_applied_experiment _Experiment_name HNCO _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_11 _Saveframe_category NMR_applied_experiment _Experiment_name CBCA(CO)NH _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_12 _Saveframe_category NMR_applied_experiment _Experiment_name HNCACB _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_13 _Saveframe_category NMR_applied_experiment _Experiment_name CBCACO(CA)HA _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_14 _Saveframe_category NMR_applied_experiment _Experiment_name HA(CA)NH _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_15 _Saveframe_category NMR_applied_experiment _Experiment_name HA(CACO)NH _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_16 _Saveframe_category NMR_applied_experiment _Experiment_name '(H)CC(CO)NH TOCSY' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_17 _Saveframe_category NMR_applied_experiment _Experiment_name 'H(CCCO)NH TOCSY' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_18 _Saveframe_category NMR_applied_experiment _Experiment_name 'HcCH COSY' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_19 _Saveframe_category NMR_applied_experiment _Experiment_name 'HcCH TOCSY' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_20 _Saveframe_category NMR_applied_experiment _Experiment_name HNHA _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_21 _Saveframe_category NMR_applied_experiment _Experiment_name '1H,13C-HSQC (high res)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_22 _Saveframe_category NMR_applied_experiment _Experiment_name 'H/D exchange (6 min)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_23 _Saveframe_category NMR_applied_experiment _Experiment_name 'H/D exchange (60 min)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_24 _Saveframe_category NMR_applied_experiment _Experiment_name 'H/D exchange (8 hrs)' _BMRB_pulse_sequence_accession_number . _Details . save_ ####################### # Sample conditions # ####################### save_sample_conditions_1 _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH 6.5 0.1 n/a temperature 293 0.5 K stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis _Indirect_shift_ratio DSS H 1 'methyl protons' ppm 0.0 internal direct . . . 1.0 DSS N 15 'methyl protons' ppm 0.0 . indirect . . . 0.101329118 DSS C 13 'methyl protons' ppm 0.0 . indirect . . . 0.251449530 stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_JR19_set_1 _Saveframe_category assigned_chemical_shifts _Details . loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $sample_conditions_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name 'RS28_PYRHO, JR19' _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 2 ALA HA H 4.111 0.02 1 2 . 2 ALA HB H 1.548 0.02 1 3 . 2 ALA C C 173.865 0.15 1 4 . 2 ALA CA C 51.83 0.15 1 5 . 2 ALA CB C 19.36 0.15 1 6 . 3 GLU H H 8.819 0.02 1 7 . 3 GLU HA H 4.315 0.02 1 8 . 3 GLU HB2 H 2.077 0.02 2 9 . 3 GLU HB3 H 1.95 0.02 2 10 . 3 GLU HG2 H 2.291 0.02 2 11 . 3 GLU HG3 H 2.295 0.02 2 12 . 3 GLU C C 175.966 0.15 1 13 . 3 GLU CA C 56.695 0.15 1 14 . 3 GLU CB C 30.033 0.15 1 15 . 3 GLU CG C 36.069 0.15 1 16 . 3 GLU N N 120.338 0.15 1 17 . 4 ASP H H 8.546 0.02 1 18 . 4 ASP HA H 4.572 0.02 1 19 . 4 ASP HB2 H 2.696 0.02 2 20 . 4 ASP HB3 H 2.623 0.02 2 21 . 4 ASP C C 175.886 0.15 1 22 . 4 ASP CA C 54.293 0.15 1 23 . 4 ASP CB C 41.082 0.15 1 24 . 4 ASP N N 120.989 0.15 1 25 . 5 GLU H H 8.321 0.02 1 26 . 5 GLU HA H 4.224 0.02 1 27 . 5 GLU HB2 H 2.038 0.02 2 28 . 5 GLU HB3 H 1.908 0.02 2 29 . 5 GLU HG2 H 2.244 0.02 2 30 . 5 GLU HG3 H 2.233 0.02 2 31 . 5 GLU C C 176.137 0.15 1 32 . 5 GLU CA C 56.637 0.15 1 33 . 5 GLU CB C 30.55 0.15 1 34 . 5 GLU CG C 36.425 0.15 1 35 . 5 GLU N N 120.963 0.15 1 36 . 6 GLY H H 8.038 0.02 1 37 . 6 GLY HA2 H 3.963 0.02 2 38 . 6 GLY HA3 H 3.732 0.02 2 39 . 6 GLY C C 172.52 0.15 1 40 . 6 GLY CA C 44.631 0.15 1 41 . 6 GLY N N 108.317 0.15 1 42 . 7 TYR H H 8.494 0.02 1 43 . 7 TYR HA H 5.12 0.02 1 44 . 7 TYR HB2 H 3.004 0.02 2 45 . 7 TYR HB3 H 2.73 0.02 2 46 . 7 TYR HD1 H 7.042 0.02 1 47 . 7 TYR HD2 H 7.042 0.02 1 48 . 7 TYR HE1 H 6.786 0.02 1 49 . 7 TYR HE2 H 6.786 0.02 1 50 . 7 TYR C C 172.746 0.15 1 51 . 7 TYR CA C 54.359 0.15 1 52 . 7 TYR CB C 39.669 0.15 1 53 . 7 TYR CD1 C 133.725 0.15 1 54 . 7 TYR CD2 C 133.725 0.15 1 55 . 7 TYR CE1 C 118.289 0.15 1 56 . 7 TYR CE2 C 118.289 0.15 1 57 . 7 TYR N N 118.852 0.15 1 58 . 8 PRO HA H 5.165 0.02 1 59 . 8 PRO HB2 H 2.112 0.02 2 60 . 8 PRO HB3 H 1.878 0.02 2 61 . 8 PRO HG2 H 2.13 0.02 2 62 . 8 PRO HG3 H 2.045 0.02 2 63 . 8 PRO HD2 H 3.895 0.02 2 64 . 8 PRO HD3 H 3.772 0.02 2 65 . 8 PRO C C 176.06 0.15 1 66 . 8 PRO CA C 61.942 0.15 1 67 . 8 PRO CB C 32.482 0.15 1 68 . 8 PRO CG C 27.714 0.15 1 69 . 8 PRO CD C 50.981 0.15 1 70 . 9 ALA H H 9.247 0.02 1 71 . 9 ALA HA H 5.097 0.02 1 72 . 9 ALA HB H 1.12 0.02 1 73 . 9 ALA C C 174.122 0.15 1 74 . 9 ALA CA C 50.84 0.15 1 75 . 9 ALA CB C 23.276 0.15 1 76 . 9 ALA N N 123.96 0.15 1 77 . 10 GLU H H 8.755 0.02 1 78 . 10 GLU HA H 5.085 0.02 1 79 . 10 GLU HB2 H 1.982 0.02 2 80 . 10 GLU HB3 H 1.941 0.02 2 81 . 10 GLU HG2 H 2.05 0.02 2 82 . 10 GLU HG3 H 1.991 0.02 2 83 . 10 GLU C C 176.689 0.15 1 84 . 10 GLU CA C 53.795 0.15 1 85 . 10 GLU CB C 33.298 0.15 1 86 . 10 GLU CG C 35.59 0.15 1 87 . 10 GLU N N 122.689 0.15 1 88 . 11 VAL H H 9.415 0.02 1 89 . 11 VAL HA H 4.11 0.02 1 90 . 11 VAL HB H 2.389 0.02 1 91 . 11 VAL HG1 H 0.759 0.02 1 92 . 11 VAL HG2 H 0.914 0.02 1 93 . 11 VAL C C 177.094 0.15 1 94 . 11 VAL CA C 63.951 0.15 1 95 . 11 VAL CB C 31.262 0.15 1 96 . 11 VAL CG1 C 21.713 0.15 1 97 . 11 VAL CG2 C 21.503 0.15 1 98 . 11 VAL N N 126.007 0.15 1 99 . 12 ILE H H 8.987 0.02 1 100 . 12 ILE HA H 4.748 0.02 1 101 . 12 ILE HB H 2.083 0.02 1 102 . 12 ILE HG12 H 1.258 0.02 2 103 . 12 ILE HG13 H 0.833 0.02 2 104 . 12 ILE HG2 H 0.924 0.02 1 105 . 12 ILE HD1 H 0.845 0.02 1 106 . 12 ILE C C 175.516 0.15 1 107 . 12 ILE CA C 61.484 0.15 1 108 . 12 ILE CB C 39.785 0.15 1 109 . 12 ILE CG1 C 26.341 0.15 1 110 . 12 ILE CG2 C 18.052 0.15 1 111 . 12 ILE CD1 C 14.646 0.15 1 112 . 12 ILE N N 123.978 0.15 1 113 . 13 GLU H H 7.586 0.02 1 114 . 13 GLU HA H 4.342 0.02 1 115 . 13 GLU HB2 H 2.101 0.02 2 116 . 13 GLU HB3 H 1.657 0.02 2 117 . 13 GLU HG2 H 2.277 0.02 2 118 . 13 GLU HG3 H 1.944 0.02 2 119 . 13 GLU C C 173.88 0.15 1 120 . 13 GLU CA C 56.617 0.15 1 121 . 13 GLU CB C 34.553 0.15 1 122 . 13 GLU CG C 36.121 0.15 1 123 . 13 GLU N N 121.341 0.15 1 124 . 14 ILE H H 9.182 0.02 1 125 . 14 ILE HA H 4.212 0.02 1 126 . 14 ILE HB H 1.937 0.02 1 127 . 14 ILE HG12 H 1.453 0.02 2 128 . 14 ILE HG13 H 1.193 0.02 2 129 . 14 ILE HG2 H 0.775 0.02 1 130 . 14 ILE HD1 H 0.718 0.02 1 131 . 14 ILE C C 175.537 0.15 1 132 . 14 ILE CA C 60.457 0.15 1 133 . 14 ILE CB C 37.334 0.15 1 134 . 14 ILE CG1 C 27.453 0.15 1 135 . 14 ILE CG2 C 17.45 0.15 1 136 . 14 ILE CD1 C 12.469 0.15 1 137 . 14 ILE N N 127.007 0.15 1 138 . 15 ILE H H 8.813 0.02 1 139 . 15 ILE HA H 4.117 0.02 1 140 . 15 ILE HB H 1.694 0.02 1 141 . 15 ILE HG12 H 1.287 0.02 2 142 . 15 ILE HG13 H 1.1 0.02 2 143 . 15 ILE HG2 H 0.859 0.02 1 144 . 15 ILE HD1 H 0.665 0.02 1 145 . 15 ILE C C 176.435 0.15 1 146 . 15 ILE CA C 62.283 0.15 1 147 . 15 ILE CB C 37.504 0.15 1 148 . 15 ILE CG1 C 27.663 0.15 1 149 . 15 ILE CG2 C 17.099 0.15 1 150 . 15 ILE CD1 C 12.461 0.15 1 151 . 15 ILE N N 129.093 0.15 1 152 . 16 GLY H H 7.589 0.02 1 153 . 16 GLY HA2 H 4.441 0.02 2 154 . 16 GLY HA3 H 3.937 0.02 2 155 . 16 GLY C C 172.17 0.15 1 156 . 16 GLY CA C 44.791 0.15 1 157 . 16 GLY N N 105.328 0.15 1 158 . 17 ARG H H 8.657 0.02 1 159 . 17 ARG HA H 4.907 0.02 1 160 . 17 ARG HB2 H 1.894 0.02 2 161 . 17 ARG HB3 H 1.788 0.02 2 162 . 17 ARG HD2 H 3.19 0.02 1 163 . 17 ARG HG3 H 1.70 0.02 1 164 . 17 ARG HG2 H 1.70 0.02 1 165 . 17 ARG HD3 H 3.19 0.02 1 166 . 17 ARG C C 176.548 0.15 1 167 . 17 ARG CA C 55.909 0.15 1 168 . 17 ARG CB C 31.663 0.15 1 169 . 17 ARG CG C 27.142 0.15 1 170 . 17 ARG CD C 43.401 0.15 1 171 . 17 ARG N N 120.7 0.15 1 172 . 18 THR H H 8.558 0.02 1 173 . 18 THR HA H 4.548 0.02 1 174 . 18 THR HB H 4.086 0.02 1 175 . 18 THR HG2 H 1.076 0.02 1 176 . 18 THR C C 174.076 0.15 1 177 . 18 THR CA C 61.168 0.15 1 178 . 18 THR CB C 69.824 0.15 1 179 . 18 THR CG2 C 20.79 0.15 1 180 . 18 THR N N 116.416 0.15 1 181 . 19 GLY H H 8.322 0.02 1 182 . 19 GLY HA2 H 4.37 0.02 2 183 . 19 GLY HA3 H 4.02 0.02 2 184 . 19 GLY C C 175.096 0.15 1 185 . 19 GLY CA C 44.676 0.15 1 186 . 19 GLY N N 110.786 0.15 1 187 . 20 THR H H 8.547 0.02 1 188 . 20 THR HA H 4.313 0.02 1 189 . 20 THR HB H 4.333 0.02 1 190 . 20 THR HG2 H 1.236 0.02 1 191 . 20 THR C C 175.742 0.15 1 192 . 20 THR CA C 63.381 0.15 1 193 . 20 THR CB C 69.412 0.15 1 194 . 20 THR CG2 C 21.827 0.15 1 195 . 20 THR N N 113.049 0.15 1 196 . 21 THR H H 8.142 0.02 1 197 . 21 THR HA H 4.464 0.02 1 198 . 21 THR HB H 4.374 0.02 1 199 . 21 THR HG2 H 1.198 0.02 1 200 . 21 THR C C 175.396 0.15 1 201 . 21 THR CA C 61.581 0.15 1 202 . 21 THR CB C 69.708 0.15 1 203 . 21 THR CG2 C 21.659 0.15 1 204 . 21 THR N N 112.33 0.15 1 205 . 22 GLY H H 8.188 0.02 1 206 . 22 GLY HA2 H 4.021 0.02 2 207 . 22 GLY HA3 H 3.809 0.02 2 208 . 22 GLY C C 174.135 0.15 1 209 . 22 GLY CA C 46.007 0.15 1 210 . 22 GLY N N 110.541 0.15 1 211 . 23 ASP H H 8.399 0.02 1 212 . 23 ASP HA H 4.622 0.02 1 213 . 23 ASP HB2 H 2.673 0.02 2 214 . 23 ASP HB3 H 2.668 0.02 2 215 . 23 ASP C C 175.181 0.15 1 216 . 23 ASP CA C 54.001 0.15 1 217 . 23 ASP CB C 40.845 0.15 1 218 . 23 ASP N N 118.403 0.15 1 219 . 24 VAL H H 7.937 0.02 1 220 . 24 VAL HA H 4.659 0.02 1 221 . 24 VAL HB H 1.922 0.02 1 222 . 24 VAL HG1 H 0.745 0.02 1 223 . 24 VAL HG2 H 0.833 0.02 1 224 . 24 VAL C C 175.238 0.15 1 225 . 24 VAL CA C 61.588 0.15 1 226 . 24 VAL CB C 33.559 0.15 1 227 . 24 VAL CG1 C 22.049 0.15 1 228 . 24 VAL CG2 C 21.221 0.15 1 229 . 24 VAL N N 120.219 0.15 1 230 . 25 THR H H 9.111 0.02 1 231 . 25 THR HA H 4.544 0.02 1 232 . 25 THR HB H 3.759 0.02 1 233 . 25 THR HG2 H 1.054 0.02 1 234 . 25 THR C C 173.029 0.15 1 235 . 25 THR CA C 62.136 0.15 1 236 . 25 THR CB C 70.372 0.15 1 237 . 25 THR CG2 C 22.6 0.15 1 238 . 25 THR N N 124.065 0.15 1 239 . 26 GLN H H 9.152 0.02 1 240 . 26 GLN HA H 5.143 0.02 1 241 . 26 GLN HB2 H 2.022 0.02 2 242 . 26 GLN HB3 H 2.005 0.02 2 243 . 26 GLN HG2 H 2.351 0.02 2 244 . 26 GLN HG3 H 2.119 0.02 2 245 . 26 GLN HE21 H 6.897 0.02 2 246 . 26 GLN HE22 H 7.587 0.02 2 247 . 26 GLN C C 175.183 0.15 1 248 . 26 GLN CA C 55.75 0.15 1 249 . 26 GLN CB C 30.451 0.15 1 250 . 26 GLN CG C 35.353 0.15 1 251 . 26 GLN N N 127.367 0.15 1 252 . 26 GLN NE2 N 111.389 0.15 1 253 . 27 VAL H H 9.302 0.02 1 254 . 27 VAL HA H 5.186 0.02 1 255 . 27 VAL HB H 2.408 0.02 1 256 . 27 VAL HG2 H 0.698 0.02 1 257 . 27 VAL HG1 H 0.889 0.02 1 258 . 27 VAL C C 174.935 0.15 1 259 . 27 VAL CA C 58.761 0.15 1 260 . 27 VAL CB C 35.198 0.15 1 261 . 27 VAL CG2 C 19.358 0.15 1 262 . 27 VAL CG1 C 23.172 0.15 1 263 . 27 VAL N N 118.652 0.15 1 264 . 28 LYS H H 8.648 0.02 1 265 . 28 LYS HA H 5.188 0.02 1 266 . 28 LYS HB2 H 1.556 0.02 2 267 . 28 LYS HB3 H 1.554 0.02 2 268 . 28 LYS HG2 H 1.312 0.02 2 269 . 28 LYS HG3 H 1.155 0.02 2 270 . 28 LYS HD2 H 1.562 0.02 1 271 . 28 LYS HD3 H 1.562 0.02 1 272 . 28 LYS HE2 H 2.8 0.02 2 273 . 28 LYS HE3 H 2.663 0.02 2 274 . 28 LYS C C 176.544 0.15 1 275 . 28 LYS CA C 55.548 0.15 1 276 . 28 LYS CB C 35.548 0.15 1 277 . 28 LYS CG C 26.174 0.15 1 278 . 28 LYS CD C 29.507 0.15 1 279 . 28 LYS CE C 41.767 0.15 1 280 . 28 LYS N N 117.982 0.15 1 281 . 29 VAL H H 9.221 0.02 1 282 . 29 VAL HA H 5.582 0.02 1 283 . 29 VAL HB H 1.724 0.02 1 284 . 29 VAL HG2 H 0.658 0.02 1 285 . 29 VAL HG1 H 0.692 0.02 1 286 . 29 VAL C C 172.805 0.15 1 287 . 29 VAL CA C 57.036 0.15 1 288 . 29 VAL CB C 34.355 0.15 1 289 . 29 VAL CG2 C 19.903 0.15 1 290 . 29 VAL CG1 C 22.544 0.15 1 291 . 29 VAL N N 115.882 0.15 1 292 . 30 ARG H H 9.125 0.02 1 293 . 30 ARG HA H 5.206 0.02 1 294 . 30 ARG HB2 H 1.859 0.02 2 295 . 30 ARG HB3 H 1.489 0.02 2 296 . 30 ARG HG2 H 1.333 0.02 2 297 . 30 ARG HG3 H 1.335 0.02 2 298 . 30 ARG HD2 H 3.208 0.02 2 299 . 30 ARG HD3 H 3.207 0.02 2 300 . 30 ARG C C 175.921 0.15 1 301 . 30 ARG CA C 53.569 0.15 1 302 . 30 ARG CB C 33.503 0.15 1 303 . 30 ARG CG C 27.466 0.15 1 304 . 30 ARG CD C 43.226 0.15 1 305 . 30 ARG N N 121.999 0.15 1 306 . 31 ILE H H 8.841 0.02 1 307 . 31 ILE HA H 3.86 0.02 1 308 . 31 ILE HB H 2.038 0.02 1 309 . 31 ILE HG12 H 1.606 0.02 2 310 . 31 ILE HG13 H 1.106 0.02 2 311 . 31 ILE HG2 H 0.904 0.02 1 312 . 31 ILE HD1 H 0.789 0.02 1 313 . 31 ILE C C 178.213 0.15 1 314 . 31 ILE CA C 63.4 0.15 1 315 . 31 ILE CB C 36.477 0.15 1 316 . 31 ILE CG1 C 28.714 0.15 1 317 . 31 ILE CG2 C 18.598 0.15 1 318 . 31 ILE CD1 C 13.035 0.15 1 319 . 31 ILE N N 128.374 0.15 1 320 . 32 LEU H H 8.998 0.02 1 321 . 32 LEU HA H 4.473 0.02 1 322 . 32 LEU HB2 H 1.708 0.02 2 323 . 32 LEU HB3 H 1.709 0.02 2 324 . 32 LEU HG H 1.836 0.02 1 325 . 32 LEU HD2 H 0.892 0.02 1 326 . 32 LEU HD1 H 0.923 0.02 1 327 . 32 LEU C C 176.589 0.15 1 328 . 32 LEU CA C 56.48 0.15 1 329 . 32 LEU CB C 44.127 0.15 1 330 . 32 LEU CG C 26.894 0.15 1 331 . 32 LEU CD2 C 22.309 0.15 1 332 . 32 LEU CD1 C 25.947 0.15 1 333 . 32 LEU N N 127.194 0.15 1 334 . 33 GLU H H 7.256 0.02 1 335 . 33 GLU HA H 4.71 0.02 1 336 . 33 GLU HB2 H 2.183 0.02 2 337 . 33 GLU HB3 H 1.834 0.02 2 338 . 33 GLU HG2 H 2.3 0.02 2 339 . 33 GLU HG3 H 2.288 0.02 2 340 . 33 GLU C C 174.429 0.15 1 341 . 33 GLU CA C 54.682 0.15 1 342 . 33 GLU CB C 35.845 0.15 1 343 . 33 GLU CG C 36.028 0.15 1 344 . 33 GLU N N 114.876 0.15 1 345 . 34 GLY H H 8.741 0.02 1 346 . 34 GLY HA2 H 4.055 0.02 2 347 . 34 GLY HA3 H 3.785 0.02 2 348 . 34 GLY C C 175.759 0.15 1 349 . 34 GLY CA C 44.225 0.15 1 350 . 34 GLY N N 107.084 0.15 1 351 . 35 ARG H H 8.64 0.02 1 352 . 35 ARG HA H 3.963 0.02 1 353 . 35 ARG HB2 H 1.824 0.02 2 354 . 35 ARG HB3 H 1.697 0.02 2 355 . 35 ARG HG2 H 1.581 0.02 2 356 . 35 ARG HG3 H 1.583 0.02 2 357 . 35 ARG HD2 H 3.175 0.02 1 358 . 35 ARG HD3 H 3.175 0.02 1 359 . 35 ARG C C 177.341 0.15 1 360 . 35 ARG CA C 58.821 0.15 1 361 . 35 ARG CB C 29.994 0.15 1 362 . 35 ARG CG C 26.37 0.15 1 363 . 35 ARG CD C 43.311 0.15 1 364 . 35 ARG N N 121.075 0.15 1 365 . 36 ASP H H 8.813 0.02 1 366 . 36 ASP HA H 4.831 0.02 1 367 . 36 ASP HB2 H 2.827 0.02 2 368 . 36 ASP HB3 H 2.439 0.02 2 369 . 36 ASP C C 173.972 0.15 1 370 . 36 ASP CA C 53.386 0.15 1 371 . 36 ASP CB C 41.033 0.15 1 372 . 36 ASP N N 117.866 0.15 1 373 . 37 LYS H H 7.144 0.02 1 374 . 37 LYS HA H 3.308 0.02 1 375 . 37 LYS HB2 H 1.678 0.02 2 376 . 37 LYS HB3 H 1.593 0.02 2 377 . 37 LYS HG2 H 1.198 0.02 2 378 . 37 LYS HG3 H 1.123 0.02 2 379 . 37 LYS HD2 H 1.674 0.02 2 380 . 37 LYS HD3 H 1.675 0.02 2 381 . 37 LYS HE2 H 2.989 0.02 2 382 . 37 LYS HE3 H 2.99 0.02 2 383 . 37 LYS C C 177.123 0.15 1 384 . 37 LYS CA C 58.696 0.15 1 385 . 37 LYS CB C 32.485 0.15 1 386 . 37 LYS CG C 24.133 0.15 1 387 . 37 LYS CD C 30.002 0.15 1 388 . 37 LYS CE C 41.939 0.15 1 389 . 37 LYS N N 119.054 0.15 1 390 . 38 GLY H H 9.112 0.02 1 391 . 38 GLY HA2 H 4.433 0.02 2 392 . 38 GLY HA3 H 3.453 0.02 2 393 . 38 GLY C C 173.978 0.15 1 394 . 38 GLY CA C 44.837 0.15 1 395 . 38 GLY N N 115.449 0.15 1 396 . 39 ARG H H 8.322 0.02 1 397 . 39 ARG HA H 4.219 0.02 1 398 . 39 ARG HB2 H 1.936 0.02 2 399 . 39 ARG HB3 H 1.793 0.02 2 400 . 39 ARG HG2 H 1.708 0.02 2 401 . 39 ARG HG3 H 1.52 0.02 2 402 . 39 ARG HD2 H 3.117 0.02 2 403 . 39 ARG HD3 H 3.066 0.02 2 404 . 39 ARG C C 174.763 0.15 1 405 . 39 ARG CA C 57.006 0.15 1 406 . 39 ARG CB C 31.024 0.15 1 407 . 39 ARG CG C 27.868 0.15 1 408 . 39 ARG CD C 43.542 0.15 1 409 . 39 ARG N N 122.431 0.15 1 410 . 40 VAL H H 8.316 0.02 1 411 . 40 VAL HA H 5.355 0.02 1 412 . 40 VAL HB H 1.911 0.02 1 413 . 40 VAL HG1 H 0.855 0.02 1 414 . 40 VAL HG2 H 0.929 0.02 1 415 . 40 VAL C C 176.746 0.15 1 416 . 40 VAL CA C 60.809 0.15 1 417 . 40 VAL CB C 32.941 0.15 1 418 . 40 VAL CG1 C 21.585 0.15 1 419 . 40 VAL CG2 C 21.265 0.15 1 420 . 40 VAL N N 123.907 0.15 1 421 . 41 ILE H H 8.751 0.02 1 422 . 41 ILE HA H 4.821 0.02 1 423 . 41 ILE HB H 1.887 0.02 1 424 . 41 ILE HG12 H 1.181 0.02 2 425 . 41 ILE HG13 H 0.872 0.02 2 426 . 41 ILE HG2 H 0.848 0.02 1 427 . 41 ILE HD1 H 0.742 0.02 1 428 . 41 ILE C C 174.376 0.15 1 429 . 41 ILE CA C 58.999 0.15 1 430 . 41 ILE CB C 42.736 0.15 1 431 . 41 ILE CG1 C 26.262 0.15 1 432 . 41 ILE CG2 C 17.909 0.15 1 433 . 41 ILE CD1 C 13.799 0.15 1 434 . 41 ILE N N 122.161 0.15 1 435 . 42 ARG H H 8.634 0.02 1 436 . 42 ARG HA H 5.37 0.02 1 437 . 42 ARG HB2 H 1.728 0.02 2 438 . 42 ARG HB3 H 1.722 0.02 2 439 . 42 ARG HG2 H 1.673 0.02 2 440 . 42 ARG HG3 H 1.381 0.02 2 441 . 42 ARG HD2 H 3.11 0.02 2 442 . 42 ARG HD3 H 3.112 0.02 2 443 . 42 ARG C C 176.785 0.15 1 444 . 42 ARG CA C 54.877 0.15 1 445 . 42 ARG CB C 31.865 0.15 1 446 . 42 ARG CG C 28.124 0.15 1 447 . 42 ARG CD C 43.354 0.15 1 448 . 42 ARG N N 121.646 0.15 1 449 . 43 ARG H H 8.862 0.02 1 450 . 43 ARG HA H 4.677 0.02 1 451 . 43 ARG HB2 H 1.737 0.02 2 452 . 43 ARG HB3 H 1.33 0.02 2 453 . 43 ARG HG2 H 1.438 0.02 2 454 . 43 ARG HG3 H 1.428 0.02 2 455 . 43 ARG HD2 H 3.309 0.02 1 456 . 43 ARG HD3 H 3.309 0.02 1 457 . 43 ARG C C 173.339 0.15 1 458 . 43 ARG CA C 53.069 0.15 1 459 . 43 ARG CB C 35.525 0.15 1 460 . 43 ARG CG C 26.964 0.15 1 461 . 43 ARG CD C 42.572 0.15 1 462 . 43 ARG N N 121.825 0.15 1 463 . 44 ASN H H 8.816 0.02 1 464 . 44 ASN HA H 5.431 0.02 1 465 . 44 ASN HB2 H 2.764 0.02 2 466 . 44 ASN HB3 H 2.329 0.02 2 467 . 44 ASN HD21 H 6.906 0.02 2 468 . 44 ASN HD22 H 7.469 0.02 2 469 . 44 ASN C C 174.931 0.15 1 470 . 44 ASN CA C 51.837 0.15 1 471 . 44 ASN CB C 39.273 0.15 1 472 . 44 ASN N N 121.082 0.15 1 473 . 44 ASN ND2 N 111.562 0.15 1 474 . 45 VAL H H 9.236 0.02 1 475 . 45 VAL HA H 4.558 0.02 1 476 . 45 VAL HB H 1.984 0.02 1 477 . 45 VAL HG2 H 0.788 0.02 1 478 . 45 VAL HG1 H 0.787 0.02 1 479 . 45 VAL C C 174.21 0.15 1 480 . 45 VAL CA C 60.463 0.15 1 481 . 45 VAL CB C 35.264 0.15 1 482 . 45 VAL CG2 C 21.522 0.15 1 483 . 45 VAL CG1 C 21.351 0.15 1 484 . 45 VAL N N 122.148 0.15 1 485 . 46 ARG H H 8.763 0.02 1 486 . 46 ARG HA H 4.933 0.02 1 487 . 46 ARG HB2 H 1.851 0.02 2 488 . 46 ARG HB3 H 1.666 0.02 2 489 . 46 ARG HG2 H 1.636 0.02 2 490 . 46 ARG HG3 H 1.593 0.02 2 491 . 46 ARG HD2 H 3.191 0.02 1 492 . 46 ARG HD3 H 3.191 0.02 1 493 . 46 ARG C C 176.401 0.15 1 494 . 46 ARG CA C 55.205 0.15 1 495 . 46 ARG CB C 31.545 0.15 1 496 . 46 ARG CG C 27.863 0.15 1 497 . 46 ARG CD C 43.089 0.15 1 498 . 46 ARG N N 126.396 0.15 1 499 . 47 GLY H H 8.324 0.02 1 500 . 47 GLY HA2 H 4.39 0.02 2 501 . 47 GLY HA3 H 3.941 0.02 2 502 . 47 GLY CA C 44.345 0.15 1 503 . 47 GLY N N 112.515 0.15 1 504 . 48 PRO HD3 H 3.581 0.02 2 505 . 48 PRO HA H 4.412 0.02 1 506 . 48 PRO HB2 H 2.194 0.02 2 507 . 48 PRO HB3 H 1.845 0.02 2 508 . 48 PRO HG2 H 2.043 0.02 2 509 . 48 PRO HG3 H 1.971 0.02 2 510 . 48 PRO C C 176.719 0.15 1 511 . 48 PRO CA C 63.438 0.15 1 512 . 48 PRO CB C 31.778 0.15 1 513 . 48 PRO CG C 27.681 0.15 1 514 . 48 PRO CD C 49.433 0.15 1 515 . 48 PRO HD2 H 3.579 0.02 2 516 . 49 VAL H H 8.16 0.02 1 517 . 49 VAL HA H 4.463 0.02 1 518 . 49 VAL HB H 2.088 0.02 1 519 . 49 VAL HG1 H 0.788 0.02 1 520 . 49 VAL HG2 H 0.994 0.02 1 521 . 49 VAL C C 171.37 0.15 1 522 . 49 VAL CA C 60.6 0.15 1 523 . 49 VAL CB C 33.79 0.15 1 524 . 49 VAL CG1 C 19.109 0.15 1 525 . 49 VAL CG2 C 22.913 0.15 1 526 . 49 VAL N N 120.996 0.15 1 527 . 50 ARG H H 8.443 0.02 1 528 . 50 ARG HA H 4.611 0.02 1 529 . 50 ARG HB2 H 1.788 0.02 2 530 . 50 ARG HB3 H 1.671 0.02 2 531 . 50 ARG HG2 H 1.651 0.02 2 532 . 50 ARG HG3 H 1.482 0.02 2 533 . 50 ARG HD2 H 3.163 0.02 2 534 . 50 ARG HD3 H 3.167 0.02 2 535 . 50 ARG C C 175.591 0.15 1 536 . 50 ARG CA C 53.955 0.15 1 537 . 50 ARG CB C 33.789 0.15 1 538 . 50 ARG CG C 26.654 0.15 1 539 . 50 ARG CD C 43.549 0.15 1 540 . 50 ARG N N 125.493 0.15 1 541 . 51 VAL H H 8.583 0.02 1 542 . 51 VAL HA H 3.311 0.02 1 543 . 51 VAL HB H 1.905 0.02 1 544 . 51 VAL HG1 H 0.93 0.02 1 545 . 51 VAL HG2 H 0.927 0.02 1 546 . 51 VAL C C 177.103 0.15 1 547 . 51 VAL CA C 65.742 0.15 1 548 . 51 VAL CB C 31.212 0.15 1 549 . 51 VAL CG1 C 21.386 0.15 1 550 . 51 VAL CG2 C 22.878 0.15 1 551 . 51 VAL N N 121.654 0.15 1 552 . 52 GLY H H 9.118 0.02 1 553 . 52 GLY HA2 H 4.528 0.02 2 554 . 52 GLY HA3 H 3.752 0.02 2 555 . 52 GLY C C 174.573 0.15 1 556 . 52 GLY CA C 44.452 0.15 1 557 . 52 GLY N N 117.456 0.15 1 558 . 53 ASP H H 7.954 0.02 1 559 . 53 ASP HA H 4.536 0.02 1 560 . 53 ASP HB2 H 2.817 0.02 2 561 . 53 ASP HB3 H 2.523 0.02 2 562 . 53 ASP C C 174.696 0.15 1 563 . 53 ASP CA C 55.497 0.15 1 564 . 53 ASP CB C 41.271 0.15 1 565 . 53 ASP N N 121.721 0.15 1 566 . 54 ILE H H 8.476 0.02 1 567 . 54 ILE HA H 4.88 0.02 1 568 . 54 ILE HB H 1.855 0.02 1 569 . 54 ILE HG12 H 1.557 0.02 2 570 . 54 ILE HG13 H 1.263 0.02 2 571 . 54 ILE HG2 H 0.796 0.02 1 572 . 54 ILE HD1 H 0.776 0.02 1 573 . 54 ILE C C 176.142 0.15 1 574 . 54 ILE CA C 59.173 0.15 1 575 . 54 ILE CB C 37.734 0.15 1 576 . 54 ILE CG1 C 27.354 0.15 1 577 . 54 ILE CG2 C 17.671 0.15 1 578 . 54 ILE CD1 C 11.321 0.15 1 579 . 54 ILE N N 120.279 0.15 1 580 . 55 LEU H H 9.307 0.02 1 581 . 55 LEU HA H 4.721 0.02 1 582 . 55 LEU HB2 H 1.465 0.02 2 583 . 55 LEU HB3 H 1.464 0.02 2 584 . 55 LEU HG H 1.573 0.02 1 585 . 55 LEU HD2 H 0.813 0.02 1 586 . 55 LEU HD1 H 0.705 0.02 1 587 . 55 LEU C C 175.099 0.15 1 588 . 55 LEU CA C 52.648 0.15 1 589 . 55 LEU CB C 44.349 0.15 1 590 . 55 LEU CG C 27.137 0.15 1 591 . 55 LEU CD2 C 23.156 0.15 1 592 . 55 LEU CD1 C 26.287 0.15 1 593 . 55 LEU N N 128.434 0.15 1 594 . 56 ILE H H 8.402 0.02 1 595 . 56 ILE HA H 4.347 0.02 1 596 . 56 ILE HB H 1.86 0.02 1 597 . 56 ILE HG12 H 1.347 0.02 2 598 . 56 ILE HG13 H 1.279 0.02 2 599 . 56 ILE HG2 H 0.607 0.02 1 600 . 56 ILE HD1 H 0.626 0.02 1 601 . 56 ILE C C 176.007 0.15 1 602 . 56 ILE CA C 59.068 0.15 1 603 . 56 ILE CB C 36.368 0.15 1 604 . 56 ILE CG1 C 26.632 0.15 1 605 . 56 ILE CG2 C 17.48 0.15 1 606 . 56 ILE CD1 C 10.111 0.15 1 607 . 56 ILE N N 120.263 0.15 1 608 . 57 LEU H H 8.864 0.02 1 609 . 57 LEU HA H 4.488 0.02 1 610 . 57 LEU HB2 H 1.549 0.02 2 611 . 57 LEU HB3 H 1.447 0.02 2 612 . 57 LEU HG H 1.628 0.02 1 613 . 57 LEU HD2 H 0.729 0.02 1 614 . 57 LEU HD1 H 0.737 0.02 1 615 . 57 LEU C C 175.979 0.15 1 616 . 57 LEU CA C 53.884 0.15 1 617 . 57 LEU CB C 42.491 0.15 1 618 . 57 LEU CG C 27.046 0.15 1 619 . 57 LEU CD2 C 23.662 0.15 1 620 . 57 LEU CD1 C 26.42 0.15 1 621 . 57 LEU N N 129.019 0.15 1 622 . 58 ARG H H 8.494 0.02 1 623 . 58 ARG HA H 4.594 0.02 1 624 . 58 ARG HB2 H 1.919 0.02 2 625 . 58 ARG HB3 H 1.689 0.02 2 626 . 58 ARG HG2 H 1.615 0.02 2 627 . 58 ARG HG3 H 1.546 0.02 2 628 . 58 ARG HD2 H 3.148 0.02 1 629 . 58 ARG HD3 H 3.148 0.02 1 630 . 58 ARG C C 176.421 0.15 1 631 . 58 ARG CA C 55.408 0.15 1 632 . 58 ARG CB C 31.915 0.15 1 633 . 58 ARG CG C 27.742 0.15 1 634 . 58 ARG CD C 43.197 0.15 1 635 . 58 ARG N N 121.082 0.15 1 636 . 59 GLU H H 8.801 0.02 1 637 . 59 GLU HA H 4.444 0.02 1 638 . 59 GLU HB2 H 2.169 0.02 2 639 . 59 GLU HB3 H 2.089 0.02 2 640 . 59 GLU HG2 H 2.328 0.02 2 641 . 59 GLU HG3 H 2.329 0.02 2 642 . 59 GLU C C 176.856 0.15 1 643 . 59 GLU CA C 56.873 0.15 1 644 . 59 GLU CB C 30.301 0.15 1 645 . 59 GLU CG C 36.171 0.15 1 646 . 59 GLU N N 121.632 0.15 1 647 . 60 THR H H 8.298 0.02 1 648 . 60 THR HA H 4.3 0.02 1 649 . 60 THR HB H 4.324 0.02 1 650 . 60 THR HG2 H 1.157 0.02 1 651 . 60 THR C C 174.511 0.15 1 652 . 60 THR CA C 62.009 0.15 1 653 . 60 THR CB C 69.435 0.15 1 654 . 60 THR CG2 C 21.886 0.15 1 655 . 60 THR N N 112.442 0.15 1 656 . 61 GLU H H 8.337 0.02 1 657 . 61 GLU HA H 4.316 0.02 1 658 . 61 GLU HB2 H 2.107 0.02 2 659 . 61 GLU HB3 H 2.012 0.02 2 660 . 61 GLU HG2 H 2.295 0.02 1 661 . 61 GLU HG3 H 2.295 0.02 1 662 . 61 GLU C C 176.819 0.15 1 663 . 61 GLU CA C 56.973 0.15 1 664 . 61 GLU CB C 30.325 0.15 1 665 . 61 GLU CG C 36.351 0.15 1 666 . 61 GLU N N 121.796 0.15 1 667 . 62 ARG H H 8.393 0.02 1 668 . 62 ARG HA H 4.217 0.02 1 669 . 62 ARG HB2 H 1.841 0.02 2 670 . 62 ARG HB3 H 1.845 0.02 2 671 . 62 ARG HG2 H 1.675 0.02 2 672 . 62 ARG HG3 H 1.641 0.02 2 673 . 62 ARG HD2 H 3.208 0.02 2 674 . 62 ARG HD3 H 3.21 0.02 2 675 . 62 ARG C C 176.649 0.15 1 676 . 62 ARG CA C 57.138 0.15 1 677 . 62 ARG CB C 30.599 0.15 1 678 . 62 ARG CG C 27.221 0.15 1 679 . 62 ARG CD C 43.358 0.15 1 680 . 62 ARG N N 121.355 0.15 1 681 . 63 GLU H H 8.346 0.02 1 682 . 63 GLU HA H 4.293 0.02 1 683 . 63 GLU HB2 H 2.017 0.02 1 684 . 63 GLU HB3 H 2.017 0.02 1 685 . 63 GLU HG2 H 2.286 0.02 1 686 . 63 GLU HG3 H 2.286 0.02 1 687 . 63 GLU C C 176.432 0.15 1 688 . 63 GLU CA C 56.754 0.15 1 689 . 63 GLU CB C 30.492 0.15 1 690 . 63 GLU CG C 36.538 0.15 1 691 . 63 GLU N N 120.758 0.15 1 692 . 64 ALA H H 8.291 0.02 1 693 . 64 ALA HA H 4.279 0.02 1 694 . 64 ALA HB H 1.375 0.02 1 695 . 64 ALA C C 177.903 0.15 1 696 . 64 ALA CA C 52.875 0.15 1 697 . 64 ALA CB C 19.185 0.15 1 698 . 64 ALA N N 124.715 0.15 1 699 . 65 ARG H H 8.242 0.02 1 700 . 65 ARG HA H 4.271 0.02 1 701 . 65 ARG HB2 H 1.842 0.02 2 702 . 65 ARG HB3 H 1.713 0.02 2 703 . 65 ARG HG2 H 1.85 0.02 2 704 . 65 ARG HG3 H 1.648 0.02 2 705 . 65 ARG HD2 H 3.219 0.02 2 706 . 65 ARG HD3 H 3.211 0.02 2 707 . 65 ARG C C 176.649 0.15 1 708 . 65 ARG CA C 56.659 0.15 1 709 . 65 ARG CB C 30.936 0.15 1 710 . 65 ARG CG C 27.324 0.15 1 711 . 65 ARG CD C 43.38 0.15 1 712 . 65 ARG N N 119.883 0.15 1 713 . 66 GLU H H 8.426 0.02 1 714 . 66 GLU HA H 4.377 0.02 1 715 . 66 GLU HB2 H 2.003 0.02 1 716 . 66 GLU HB3 H 2.003 0.02 1 717 . 66 GLU HG2 H 2.226 0.02 1 718 . 66 GLU HG3 H 2.226 0.02 1 719 . 66 GLU C C 176.498 0.15 1 720 . 66 GLU CA C 56.875 0.15 1 721 . 66 GLU CB C 30.425 0.15 1 722 . 66 GLU CG C 36.33 0.15 1 723 . 66 GLU N N 121.961 0.15 1 724 . 67 ILE H H 8.332 0.02 1 725 . 67 ILE HA H 4.166 0.02 1 726 . 67 ILE HB H 1.871 0.02 1 727 . 67 ILE HG12 H 1.493 0.02 2 728 . 67 ILE HG13 H 1.156 0.02 2 729 . 67 ILE HG2 H 0.909 0.02 1 730 . 67 ILE HD1 H 0.815 0.02 1 731 . 67 ILE C C 176.304 0.15 1 732 . 67 ILE CA C 61.465 0.15 1 733 . 67 ILE CB C 38.961 0.15 1 734 . 67 ILE CG1 C 27.484 0.15 1 735 . 67 ILE CG2 C 17.747 0.15 1 736 . 67 ILE CD1 C 13.336 0.15 1 737 . 67 ILE N N 122.51 0.15 1 738 . 68 LYS H H 8.444 0.02 1 739 . 68 LYS HA H 4.35 0.02 1 740 . 68 LYS HB2 H 1.825 0.02 2 741 . 68 LYS HB3 H 1.819 0.02 2 742 . 68 LYS HG2 H 1.482 0.02 2 743 . 68 LYS HG3 H 1.434 0.02 2 744 . 68 LYS HD2 H 1.678 0.02 1 745 . 68 LYS HD3 H 1.678 0.02 1 746 . 68 LYS HE2 H 2.979 0.02 2 747 . 68 LYS HE3 H 2.981 0.02 2 748 . 68 LYS C C 176.883 0.15 1 749 . 68 LYS CA C 56.866 0.15 1 750 . 68 LYS CB C 33.068 0.15 1 751 . 68 LYS CG C 24.936 0.15 1 752 . 68 LYS CD C 29.119 0.15 1 753 . 68 LYS CE C 41.916 0.15 1 754 . 68 LYS N N 124.586 0.15 1 755 . 69 SER H H 8.317 0.02 1 756 . 69 SER HA H 4.352 0.02 1 757 . 69 SER HB2 H 3.884 0.02 2 758 . 69 SER HB3 H 3.863 0.02 2 759 . 69 SER C C 174.934 0.15 1 760 . 69 SER CA C 58.596 0.15 1 761 . 69 SER CB C 63.654 0.15 1 762 . 69 SER N N 116.751 0.15 1 763 . 70 ARG H H 8.459 0.02 1 764 . 70 ARG HA H 4.338 0.02 1 765 . 70 ARG HB2 H 1.917 0.02 2 766 . 70 ARG HB3 H 1.809 0.02 2 767 . 70 ARG HG2 H 1.721 0.02 2 768 . 70 ARG HG3 H 1.659 0.02 2 769 . 70 ARG HD2 H 3.215 0.02 1 770 . 70 ARG HD3 H 3.215 0.02 1 771 . 70 ARG C C 176.801 0.15 1 772 . 70 ARG CA C 56.783 0.15 1 773 . 70 ARG CB C 30.656 0.15 1 774 . 70 ARG CG C 27.23 0.15 1 775 . 70 ARG CD C 43.484 0.15 1 776 . 70 ARG N N 123.581 0.15 1 777 . 71 ARG H H 8.315 0.02 1 778 . 71 ARG HA H 4.264 0.02 1 779 . 71 ARG HB2 H 1.829 0.02 2 780 . 71 ARG HB3 H 1.782 0.02 2 781 . 71 ARG HG2 H 1.651 0.02 1 782 . 71 ARG HG3 H 1.651 0.02 1 783 . 71 ARG HD2 H 3.183 0.02 1 784 . 71 ARG HD3 H 3.183 0.02 1 785 . 71 ARG C C 176.372 0.15 1 786 . 71 ARG CA C 56.722 0.15 1 787 . 71 ARG CB C 30.672 0.15 1 788 . 71 ARG CG C 27.242 0.15 1 789 . 71 ARG CD C 43.324 0.15 1 790 . 71 ARG N N 121.967 0.15 1 791 . 72 ALA H H 8.272 0.02 1 792 . 72 ALA HA H 4.246 0.02 1 793 . 72 ALA HB H 1.407 0.02 1 794 . 72 ALA C C 177.951 0.15 1 795 . 72 ALA CA C 52.909 0.15 1 796 . 72 ALA CB C 19.036 0.15 1 797 . 72 ALA N N 124.828 0.15 1 798 . 73 ALA H H 8.239 0.02 5 799 . 73 ALA HA H 4.234 0.02 5 800 . 73 ALA HB H 1.404 0.02 5 801 . 73 ALA C C 177.933 0.15 5 802 . 73 ALA CA C 52.862 0.15 5 803 . 73 ALA CB C 18.995 0.15 5 804 . 73 ALA N N 123.047 0.15 5 805 . 74 ALA H H 8.152 0.02 5 806 . 74 ALA HA H 4.253 0.02 5 807 . 74 ALA HB H 1.4 0.02 5 808 . 74 ALA C C 177.978 0.15 5 809 . 74 ALA CA C 52.767 0.15 5 810 . 74 ALA CB C 18.996 0.15 5 811 . 74 ALA N N 122.406 0.15 5 812 . 75 LEU H H 8.051 0.02 1 813 . 75 LEU HA H 4.262 0.02 1 814 . 75 LEU HB2 H 1.62 0.02 2 815 . 75 LEU HB3 H 1.52 0.02 2 816 . 75 LEU HG H 1.614 0.02 1 817 . 75 LEU HD2 H 0.839 0.02 1 818 . 75 LEU HD1 H 0.897 0.02 1 819 . 75 LEU C C 177.473 0.15 1 820 . 75 LEU CA C 55.32 0.15 1 821 . 75 LEU CB C 42.333 0.15 1 822 . 75 LEU CG C 27.061 0.15 1 823 . 75 LEU CD2 C 23.401 0.15 1 824 . 75 LEU CD1 C 24.996 0.15 1 825 . 75 LEU N N 120.458 0.15 1 826 . 76 GLU H H 8.171 0.02 1 827 . 76 GLU HA H 4.184 0.02 1 828 . 76 GLU HB2 H 1.887 0.02 2 829 . 76 GLU HB3 H 1.899 0.02 2 830 . 76 GLU HG2 H 2.208 0.02 2 831 . 76 GLU HG3 H 2.144 0.02 2 832 . 76 GLU C C 176.224 0.15 1 833 . 76 GLU CA C 56.588 0.15 1 834 . 76 GLU CB C 30.251 0.15 1 835 . 76 GLU CG C 36.088 0.15 1 836 . 76 GLU N N 120.91 0.15 1 837 . 77 HIS H H 8.287 0.05 1 838 . 77 HIS HA H 4.596 0.05 1 839 . 77 HIS HB2 H 3.129 0.05 1 840 . 77 HIS HB3 H 3.129 0.05 1 841 . 77 HIS C C 173.835 0.15 1 842 . 77 HIS CA C 55.914 0.15 1 843 . 77 HIS CB C 30.132 0.15 1 844 . 77 HIS N N 119.667 0.15 1 845 . 78 HIS H H 8.172 0.05 1 846 . 78 HIS HA H 4.425 0.05 1 847 . 78 HIS C C 179.033 0.15 1 848 . 78 HIS CA C 57.24 0.15 1 849 . 78 HIS CB C 30.154 0.15 1 850 . 78 HIS N N 125.409 0.15 1 stop_ loop_ _Atom_shift_assign_ID_ambiguity 805 798 '806,799' '807,807,807,800,800,800' '808,801' '809,802' '810,803' '811,804' stop_ save_ ######################## # Coupling constants # ######################## save_JR19_JNH_1 _Saveframe_category coupling_constants _Details . loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $sample_conditions_1 _Spectrometer_frequency_1H 750 _Mol_system_component_name 'RS28_PYRHO, JR19' _Text_data_format . _Text_data . loop_ _Coupling_constant_ID _Coupling_constant_code _Atom_one_residue_seq_code _Atom_one_residue_label _Atom_one_name _Atom_two_residue_seq_code _Atom_two_residue_label _Atom_two_name _Coupling_constant_value _Coupling_constant_min_value _Coupling_constant_max_value _Coupling_constant_value_error 1 3JHNHA 4 ASP H 4 ASP HA 6.4121 . . 1.5 2 3JHNHA 5 GLU H 5 GLU HA 6.3676 . . 1.5 3 3JHNHA 7 TYR H 7 TYR HA 7.6814 . . 1.5 4 3JHNHA 9 ALA H 9 ALA HA 7.9562 . . 1.5 5 3JHNHA 11 VAL H 11 VAL HA 4.433 . . 1.5 6 3JHNHA 12 ILE H 12 ILE HA 9.3657 . . 1.5 7 3JHNHA 13 GLU H 13 GLU HA 6.2092 . . 1.5 8 3JHNHA 15 ILE H 15 ILE HA 7.4048 . . 1.5 9 3JHNHA 18 THR H 18 THR HA 7.3606 . . 1.5 10 3JHNHA 20 THR H 20 THR HA 6.104 . . 1.5 11 3JHNHA 21 THR H 21 THR HA 7.7158 . . 1.5 12 3JHNHA 23 ASP H 23 ASP HA 6.9962 . . 1.5 13 3JHNHA 24 VAL H 24 VAL HA 7.6109 . . 1.5 14 3JHNHA 25 THR H 25 THR HA 8.4091 . . 1.5 15 3JHNHA 27 VAL H 27 VAL HA 8.6001 . . 1.5 16 3JHNHA 28 LYS H 28 LYS HA 8.4782 . . 1.5 17 3JHNHA 29 VAL H 29 VAL HA 8.6249 . . 1.5 18 3JHNHA 30 ARG H 30 ARG HA 8.5142 . . 1.5 19 3JHNHA 31 ILE H 31 ILE HA 4.0022 . . 1.5 20 3JHNHA 32 LEU H 32 LEU HA 6.9964 . . 1.5 21 3JHNHA 33 GLU H 33 GLU HA 7.1061 . . 1.5 22 3JHNHA 36 ASP H 36 ASP HA 7.3292 . . 1.5 23 3JHNHA 37 LYS H 37 LYS HA 1.3022 . . 1.5 24 3JHNHA 40 VAL H 40 VAL HA 7.9633 . . 1.5 25 3JHNHA 43 ARG H 43 ARG HA 6.8454 . . 1.5 26 3JHNHA 44 ASN H 44 ASN HA 7.4117 . . 1.5 27 3JHNHA 45 VAL H 45 VAL HA 8.0191 . . 1.5 28 3JHNHA 46 ARG H 46 ARG HA 8.2328 . . 1.5 29 3JHNHA 50 ARG H 50 ARG HA 8.1337 . . 1.5 30 3JHNHA 53 ASP H 53 ASP HA 4.0085 . . 1.5 31 3JHNHA 54 ILE H 54 ILE HA 7.3989 . . 1.5 32 3JHNHA 55 LEU H 55 LEU HA 8.4409 . . 1.5 33 3JHNHA 56 ILE H 56 ILE HA 7.5537 . . 1.5 34 3JHNHA 57 LEU H 57 LEU HA 7.1476 . . 1.5 35 3JHNHA 62 ARG H 62 ARG HA 5.1081 . . 1.5 36 3JHNHA 65 ARG H 65 ARG HA 5.5522 . . 1.5 37 3JHNHA 66 GLU H 66 GLU HA 4.9678 . . 1.5 38 3JHNHA 68 LYS H 68 LYS HA 3.8576 . . 1.5 39 3JHNHA 69 SER H 69 SER HA 5.2768 . . 1.5 40 3JHNHA 70 ARG H 70 ARG HA 6.7776 . . 1.5 41 3JHNHA 73 ALA H 73 ALA HA 4.8617 . . 1.5 42 3JHNHA 74 ALA H 74 ALA HA 5.1716 . . 1.5 43 3JHNHA 75 LEU H 75 LEU HA 6.4819 . . 1.5 44 3JHNHA 77 HIS H 77 HIS HA 5.5934 . . 1.5 45 3JHNHA 78 HIS H 78 HIS HA 7.3894 . . 1.5 stop_ save_