data_5669 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; Structure and Ubiquitin Interactions of the Conserved NZF Domain of Npl4 ; _BMRB_accession_number 5669 _BMRB_flat_file_name bmr5669.str _Entry_type original _Submission_date 2003-01-23 _Accession_date 2003-01-23 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Wang B. . . 2 Alam S. L. . 3 Meyer H. H. . 4 Payne M. . . 5 Stemmler T. L. . 6 Davis D. R. . 7 Sundquist W. I. . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 1 coupling_constants 1 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 148 "13C chemical shifts" 109 "15N chemical shifts" 30 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2003-06-10 original author . stop_ _Original_release_date 2003-06-10 save_ ############################# # Citation for this entry # ############################# save_entry_citation _Saveframe_category entry_citation _Citation_full . _Citation_title ; Structure and Ubiquitin Interactions of the Conserved Zinc Finger Domain of Npl4 ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code 22651060 _PubMed_ID 12644454 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Wang B. . . 2 Alam S. L. . 3 Meyer H. H. . 4 Payne M. . . 5 Stemmler T. L. . 6 Davis D. R. . 7 Sundquist W. I. . stop_ _Journal_abbreviation 'J. Biol. Chem.' _Journal_volume 278 _Journal_issue 22 _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first 20225 _Page_last 20234 _Year 2003 _Details . loop_ _Keyword beta-ribbon Npl4 'NZF domain' 'rubredoxin knuckle' ubiquitin zinc-finger stop_ save_ ####################################### # Cited references within the entry # ####################################### save_ref_1 _Saveframe_category citation _Citation_full ; Meyer HH, Wang Y, Warren G. Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and Ufd1-Npl4. EMBO J. 2002 Nov 1;21(21):5645-52. ; _Citation_title 'Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and Ufd1-Npl4.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 12411482 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Meyer 'Hemmo H.' H. . 2 Wang Yanzhuang . . 3 Warren Graham . . stop_ _Journal_abbreviation 'EMBO J.' _Journal_name_full 'The EMBO journal' _Journal_volume 21 _Journal_issue 21 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 5645 _Page_last 5652 _Year 2002 _Details ; The multiple functions of the p97/Cdc48p ATPase can be explained largely by adaptors that link its activity to different cellular pathways, but how these adaptors recognize different substrates is unclear. Here we present evidence that the mammalian adaptors, p47 and Ufd1-Npl4, both bind ubiquitin conjugates directly and so link p97 to ubiquitylated substrates. In the case of Ufd1-Npl4, which is involved in endoplasmic reticulum (ER)-associated degradation and nuclear envelope reassembly, binding to ubiquitin is mediated through a putative zinc finger in Npl4. This novel domain (NZF) is conserved in metazoa and is both present and functional in other proteins. In the case of p47, which is involved in the reassembly of the ER, the nuclear envelope and the Golgi apparatus, binding is mediated by a UBA domain. Unlike Ufd1-Npl4, it binds ubiquitin only when complexed with p97, and binds mono- rather than polyubiquitin conjugates. The UBA domain is required for the function of p47 in mitotic Golgi reassembly. Together, these data suggest that ubiquitin recognition is a common feature of p97-mediated reactions. ; save_ save_ref_2 _Saveframe_category citation _Citation_full ; Hetzer M, Meyer HH, Walther TC, Bilbao-Cortes D, Warren G, Mattaj IW. Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly. Nat Cell Biol. 2001 Dec;3(12):1086-91. ; _Citation_title 'Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 11781570 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Hetzer M. . . 2 Meyer 'H. H.' H. . 3 Walther 'T. C.' C. . 4 Bilbao-Cortes D. . . 5 Warren G. . . 6 Mattaj 'I. W.' W. . stop_ _Journal_abbreviation 'Nat. Cell Biol.' _Journal_name_full 'Nature cell biology' _Journal_volume 3 _Journal_issue 12 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 1086 _Page_last 1091 _Year 2001 _Details ; Although nuclear envelope (NE) assembly is known to require the GTPase Ran, the membrane fusion machinery involved is uncharacterized. NE assembly involves formation of a reticular network on chromatin, fusion of this network into a closed NE and subsequent expansion. Here we show that p97, an AAA-ATPase previously implicated in fusion of Golgi and transitional endoplasmic reticulum (ER) membranes together with the adaptor p47, has two discrete functions in NE assembly. Formation of a closed NE requires the p97-Ufd1-Npl4 complex, not previously implicated in membrane fusion. Subsequent NE growth involves a p97-p47 complex. This study provides the first insights into the molecular mechanisms and specificity of fusion events involved in NE formation. ; save_ save_ref_3 _Saveframe_category citation _Citation_full ; Ye Y, Meyer HH, Rapoport TA. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature. 2001 Dec 6;414(6864):652-6. ; _Citation_title 'The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 11740563 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Ye Y. . . 2 Meyer 'H. H.' H. . 3 Rapoport 'T. A.' A. . stop_ _Journal_abbreviation Nature _Journal_name_full Nature _Journal_volume 414 _Journal_issue 6864 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 652 _Page_last 656 _Year 2001 _Details ; In eukaryotic cells, incorrectly folded proteins in the endoplasmic reticulum (ER) are exported into the cytosol and degraded by the proteasome. This pathway is co-opted by some viruses. For example, the US11 protein of the human cytomegalovirus targets the major histocompatibility complex class I heavy chain for cytosolic degradation. How proteins are extracted from the ER membrane is unknown. In bacteria and mitochondria, members of the AAA ATPase family are involved in extracting and degrading membrane proteins. Here we demonstrate that another member of this family, Cdc48 in yeast and p97 in mammals, is required for the export of ER proteins into the cytosol. Whereas Cdc48/p97 was previously known to function in a complex with the cofactor p47 (ref. 5) in membrane fusion, we demonstrate that its role in ER protein export requires the interacting partners Ufd1 and Npl4. The AAA ATPase interacts with substrates at the ER membrane and is needed to release them as polyubiquitinated species into the cytosol. We propose that the Cdc48/p97-Ufd1-Npl4 complex extracts proteins from the ER membrane for cytosolic degradation. ; save_ save_ref_4 _Saveframe_category citation _Citation_full ; Meyer HH, Shorter JG, Seemann J, Pappin D, Warren G. A complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J. 2000 May 15;19(10):2181-92. ; _Citation_title 'A complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 10811609 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Meyer 'H. H.' H. . 2 Shorter 'J. G.' G. . 3 Seemann J. . . 4 Pappin D. . . 5 Warren G. . . stop_ _Journal_abbreviation 'EMBO J.' _Journal_name_full 'The EMBO journal' _Journal_volume 19 _Journal_issue 10 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 2181 _Page_last 2192 _Year 2000 _Details ; The AAA-ATPase, p97/Cdc48p, has been implicated in many different pathways ranging from membrane fusion to ubiquitin-dependent protein degradation. Binding of the p47 complex directs p97 to act in the post-mitotic fusion of Golgi membranes. We now describe another binding complex comprising mammalian Ufd1 and Npl4. Yeast Ufd1p is required for ubiquitin-dependent protein degradation whereas yeast Npl4p has been implicated in nuclear transport. In rat liver cytosol, Ufd1 and Npl4 form a binary complex, which exists either alone or bound to p97. Ufd1/Npl4 competes with p47 for binding to p97 and so inhibits Golgi membrane fusion. This suggests that it is involved in another cellular function catalysed by p97, the most likely being ubiquitin-dependent events during mitosis. The fact that the binding of p47 and Ufd1/Npl4 is mutually exclusive suggests that these protein complexes act as adapters, directing a basic p97 activity into different cellular pathways. ; save_ ################################## # Molecular system description # ################################## save_system_NZF _Saveframe_category molecular_system _Mol_system_name 'Npl4 Zinc Finger domain' _Abbreviation_common NZF _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label 'Npl4 Zinc Finger domain' $NPL4-NZF 'ZINC ION' $ZN stop_ _System_molecular_weight 3438.35 _System_physical_state native _System_oligomer_state monomer _System_paramagnetic no _System_thiol_state 'all other bound' loop_ _Biological_function 'ubiquitin binding domain' stop_ _Database_query_date . _Details . save_ ######################## # Monomeric polymers # ######################## save_NPL4-NZF _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common 'Npl4 Zinc Finger' _Abbreviation_common NZF _Molecular_mass 3373 _Mol_thiol_state 'all other bound' _Details 'Contains zinc-ion coordinated by four cysteine residues.' ############################## # Polymer residue sequence # ############################## _Residue_count 31 _Mol_residue_sequence ; GSTSAMWACQHCTFMNQPGT GHCEMCSLPRT ; loop_ _Residue_seq_code _Residue_label 1 GLY 2 SER 3 THR 4 SER 5 ALA 6 MET 7 TRP 8 ALA 9 CYS 10 GLN 11 HIS 12 CYS 13 THR 14 PHE 15 MET 16 ASN 17 GLN 18 PRO 19 GLY 20 THR 21 GLY 22 HIS 23 CYS 24 GLU 25 MET 26 CYS 27 SER 28 LEU 29 PRO 30 ARG 31 THR stop_ _Sequence_homology_query_date . _Sequence_homology_query_revised_last_date . save_ ############# # Ligands # ############# save_ZN _Saveframe_category ligand _Mol_type non-polymer _Name_common "ZN (ZINC ION)" _BMRB_code . _PDB_code ZN _Molecular_mass 65.409 _Mol_charge 2 _Mol_paramagnetic . _Mol_aromatic no _Details ; Information obtained from PDB's Chemical Component Dictionary at http://wwpdb-remediation.rutgers.edu/downloads.html Downloaded on Tue Jul 26 11:33:38 2011 ; loop_ _Atom_name _PDB_atom_name _Atom_type _Atom_chirality _Atom_charge _Atom_oxidation_number _Atom_unpaired_electrons ZN ZN ZN . 2 . ? stop_ _Mol_thiol_state . _Sequence_homology_query_date . save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species $NPL4-NZF Rat 10116 Eukaryota Metazoa Rattus norvegicus stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_name $NPL4-NZF 'recombinant technology' . . . . PGEX stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_sample_1 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $NPL4-NZF 1 mM '[U-15N; U-13C]' 'sodium phosphate' 20 mM . NaCl 50 mM . BME 5 mM . H2O 90 % . D2O 10 % . stop_ save_ save_sample_2 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Concentration_min_value _Concentration_max_value _Isotopic_labeling $NPL4-NZF 1 mM 0.9 1.1 '[U-95% 15N]' stop_ save_ ############################ # Computer software used # ############################ save_CNS _Saveframe_category software _Name CNS _Version 1.1 loop_ _Task refinement stop_ _Details ; BRUNGER, ADAMS, CLORE, DELANO, GROS, GROSSE-KUNSTLEVE, JIANG, KUSZEWSKI, NILGES, PANNU, READ, RICE, SIMONSON, WARREN. ; save_ save_DYANA _Saveframe_category software _Name DYANA _Version 1.5 loop_ _Task refinement stop_ _Details 'Guntert, P., Mumenthaler, C., Wuthrich, K.' save_ save_FELIX _Saveframe_category software _Name FELIX _Version 97 loop_ _Task processing stop_ _Details . save_ save_Sparky _Saveframe_category software _Name SPARKY _Version 3.106 loop_ _Task 'data analysis' stop_ _Details . save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_NMR_spectrometer_1 _Saveframe_category NMR_spectrometer _Manufacturer Varian _Model UNITYplus _Field_strength 500 _Details . save_ save_NMR_spectrometer_2 _Saveframe_category NMR_spectrometer _Manufacturer Varian _Model Inova _Field_strength 600 _Details . save_ ############################# # NMR applied experiments # ############################# save_HNCACB_1 _Saveframe_category NMR_applied_experiment _Experiment_name HNCACB _Sample_label . save_ save_HN(CA)CO_2 _Saveframe_category NMR_applied_experiment _Experiment_name HN(CA)CO _Sample_label . save_ save_H(CCO)NH-TOCSY_3 _Saveframe_category NMR_applied_experiment _Experiment_name H(CCO)NH-TOCSY _Sample_label . save_ save_(H)C(CO)NH-TOCSY_4 _Saveframe_category NMR_applied_experiment _Experiment_name (H)C(CO)NH-TOCSY _Sample_label . save_ save_3D_13C-separated_NOESY_5 _Saveframe_category NMR_applied_experiment _Experiment_name '3D 13C-separated NOESY' _Sample_label . save_ save_3D_15N-separated_NOESY_6 _Saveframe_category NMR_applied_experiment _Experiment_name '3D 15N-separated NOESY' _Sample_label . save_ save_NMR_spec_expt__0_1 _Saveframe_category NMR_applied_experiment _Experiment_name HNCACB _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_2 _Saveframe_category NMR_applied_experiment _Experiment_name HN(CA)CO _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_3 _Saveframe_category NMR_applied_experiment _Experiment_name H(CCO)NH-TOCSY _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_4 _Saveframe_category NMR_applied_experiment _Experiment_name (H)C(CO)NH-TOCSY _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_5 _Saveframe_category NMR_applied_experiment _Experiment_name '3D 13C-separated NOESY' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_6 _Saveframe_category NMR_applied_experiment _Experiment_name '3D 15N-separated NOESY' _BMRB_pulse_sequence_accession_number . _Details . save_ ####################### # Sample conditions # ####################### save_sample_cond_1 _Saveframe_category sample_conditions _Details 'tube sealed under argon' loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units 'ionic strength' 75 . mM pH 5.5 0.1 n/a pressure 1 . atm temperature 291 0.1 K stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis _Indirect_shift_ratio DSS C 13 'methyl protons' ppm 0.0 . indirect . . . 0.251449530 DSS H 1 'methyl protons' ppm 0.0 internal direct . . . 1.0 DSS N 15 'methyl protons' ppm 0.0 . indirect . . . 0.101329118 stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_chemical_shift_set_1 _Saveframe_category assigned_chemical_shifts _Details 'Residues 1-3 are unassigned.' loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $sample_cond_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name 'Npl4 Zinc Finger domain' _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 1 GLY H H 8.256 0.03 1 2 . 1 GLY N N 110.878 0.1 1 3 . 3 THR CB C 69.542 0.1 1 4 . 3 THR HB H 4.231 0.03 1 5 . 3 THR CG2 C 21.544 0.1 1 6 . 3 THR HG2 H 1.132 0.03 1 7 . 4 SER CA C 58.361 0.1 1 8 . 4 SER HA H 4.393 0.03 1 9 . 4 SER CB C 63.787 0.1 1 10 . 4 SER HB2 H 3.806 0.03 2 11 . 5 ALA H H 8.071 0.03 1 12 . 5 ALA N N 125.442 0.1 1 13 . 5 ALA CA C 51.884 0.1 1 14 . 5 ALA HA H 4.432 0.03 1 15 . 5 ALA C C 177.651 0.1 1 16 . 5 ALA CB C 20.017 0.1 1 17 . 5 ALA HB H 1.371 0.03 1 18 . 6 MET H H 7.996 0.03 1 19 . 6 MET N N 118.760 0.1 1 20 . 6 MET CA C 56.813 0.1 1 21 . 6 MET HA H 4.366 0.03 1 22 . 6 MET C C 175.598 0.1 1 23 . 6 MET CB C 34.395 0.1 1 24 . 6 MET HB2 H 1.861 0.03 1 25 . 6 MET HB3 H 1.674 0.03 1 26 . 6 MET CG C 33.053 0.1 1 27 . 6 MET HG2 H 2.574 0.03 2 28 . 6 MET HG3 H 2.238 0.03 2 29 . 7 TRP H H 8.151 0.03 1 30 . 7 TRP N N 118.508 0.1 1 31 . 7 TRP CA C 53.617 0.1 1 32 . 7 TRP HA H 4.914 0.03 1 33 . 7 TRP C C 173.294 0.1 1 34 . 7 TRP CB C 31.267 0.1 1 35 . 7 TRP HB2 H 3.155 0.03 1 36 . 7 TRP HB3 H 2.879 0.03 1 37 . 7 TRP CD1 C 127.147 0.1 1 38 . 7 TRP HD1 H 6.833 0.03 1 39 . 7 TRP NE1 N 131.314 0.1 1 40 . 7 TRP HE1 H 9.559 0.03 1 41 . 7 TRP CE3 C 121.085 0.1 1 42 . 7 TRP HE3 H 7.225 0.03 1 43 . 7 TRP CZ2 C 114.522 0.1 1 44 . 7 TRP HZ2 H 6.854 0.03 1 45 . 7 TRP CZ3 C 121.918 0.1 1 46 . 7 TRP HZ3 H 7.208 0.03 1 47 . 7 TRP CH2 C 123.625 0.1 1 48 . 7 TRP HH2 H 6.749 0.03 1 49 . 8 ALA H H 8.744 0.03 1 50 . 8 ALA N N 126.281 0.1 1 51 . 8 ALA CA C 50.593 0.1 1 52 . 8 ALA HA H 4.579 0.03 1 53 . 8 ALA C C 177.697 0.1 1 54 . 8 ALA CB C 19.566 0.1 1 55 . 8 ALA HB H 1.101 0.03 1 56 . 9 CYS H H 8.830 0.03 1 57 . 9 CYS N N 128.000 0.1 1 58 . 9 CYS CA C 59.725 0.1 1 59 . 9 CYS HA H 4.577 0.03 1 60 . 9 CYS C C 178.806 0.1 1 61 . 9 CYS CB C 31.731 0.1 1 62 . 9 CYS HB2 H 3.176 0.03 1 63 . 9 CYS HB3 H 2.775 0.03 1 64 . 10 GLN H H 9.700 0.03 1 65 . 10 GLN N N 130.963 0.1 1 66 . 10 GLN CA C 57.668 0.1 1 67 . 10 GLN HA H 3.999 0.03 1 68 . 10 GLN C C 175.298 0.1 1 69 . 10 GLN CB C 28.726 0.1 1 70 . 10 GLN HB2 H 1.884 0.03 2 71 . 10 GLN HB3 H 1.811 0.03 2 72 . 10 GLN CG C 33.731 0.1 1 73 . 10 GLN HG2 H 2.230 0.03 2 74 . 10 GLN HG3 H 2.050 0.03 2 75 . 10 GLN NE2 N 113.175 0.1 1 76 . 10 GLN HE21 H 7.413 0.03 1 77 . 10 GLN HE22 H 6.873 0.03 1 78 . 11 HIS H H 9.166 0.03 1 79 . 11 HIS N N 121.319 0.1 1 80 . 11 HIS CA C 57.819 0.1 1 81 . 11 HIS HA H 4.531 0.03 1 82 . 11 HIS C C 177.073 0.1 1 83 . 11 HIS CB C 31.791 0.1 1 84 . 11 HIS HB2 H 3.160 0.03 2 85 . 11 HIS CD2 C 121.640 0.1 1 86 . 11 HIS HD2 H 7.175 0.03 1 87 . 12 CYS H H 8.991 0.03 1 88 . 12 CYS N N 119.535 0.1 1 89 . 12 CYS CA C 58.896 0.1 1 90 . 12 CYS HA H 5.102 0.03 1 91 . 12 CYS C C 178.285 0.1 1 92 . 12 CYS CB C 32.503 0.1 1 93 . 12 CYS HB2 H 3.230 0.03 1 94 . 12 CYS HB3 H 2.550 0.03 1 95 . 13 THR H H 7.703 0.03 1 96 . 13 THR N N 117.369 0.1 1 97 . 13 THR CA C 66.037 0.1 1 98 . 13 THR HA H 4.187 0.03 1 99 . 13 THR C C 172.060 0.1 1 100 . 13 THR CB C 69.884 0.1 1 101 . 13 THR HB H 4.392 0.03 1 102 . 13 THR CG2 C 21.669 0.1 1 103 . 13 THR HG2 H 1.071 0.03 1 104 . 14 PHE H H 8.804 0.03 1 105 . 14 PHE N N 126.671 0.1 1 106 . 14 PHE CA C 60.620 0.1 1 107 . 14 PHE HA H 4.042 0.03 1 108 . 14 PHE C C 174.323 0.1 1 109 . 14 PHE CB C 41.026 0.1 1 110 . 14 PHE HB2 H 3.266 0.03 1 111 . 14 PHE HB3 H 2.630 0.03 1 112 . 14 PHE CD1 C 131.961 0.1 1 113 . 14 PHE HD1 H 6.985 0.03 3 114 . 14 PHE CE1 C 131.939 0.1 1 115 . 14 PHE HE1 H 7.142 0.03 3 116 . 14 PHE CZ C 129.618 0.1 1 117 . 14 PHE HZ H 7.098 0.03 1 118 . 15 MET H H 6.973 0.03 1 119 . 15 MET N N 124.237 0.1 1 120 . 15 MET CA C 53.154 0.1 1 121 . 15 MET HA H 4.391 0.03 1 122 . 15 MET C C 173.514 0.1 1 123 . 15 MET CB C 30.370 0.1 1 124 . 15 MET HB2 H 1.517 0.03 1 125 . 15 MET HB3 H 1.364 0.03 1 126 . 15 MET CG C 31.269 0.1 1 127 . 15 MET HG2 H 2.244 0.03 2 128 . 16 ASN H H 8.656 0.03 1 129 . 16 ASN N N 124.204 0.1 1 130 . 16 ASN CA C 53.286 0.1 1 131 . 16 ASN HA H 4.364 0.03 1 132 . 16 ASN C C 174.332 0.1 1 133 . 16 ASN CB C 43.086 0.1 1 134 . 16 ASN HB2 H 1.802 0.03 1 135 . 16 ASN HB3 H 0.142 0.03 1 136 . 16 ASN ND2 N 115.639 0.1 1 137 . 16 ASN HD21 H 7.417 0.03 1 138 . 16 ASN HD22 H 7.417 0.03 1 139 . 17 GLN H H 8.608 0.03 1 140 . 17 GLN N N 116.599 0.1 1 141 . 17 GLN CA C 53.915 0.1 1 142 . 17 GLN HA H 4.236 0.03 1 143 . 17 GLN CB C 27.836 0.1 1 144 . 17 GLN HB2 H 2.262 0.03 1 145 . 17 GLN HB3 H 1.828 0.03 1 146 . 17 GLN CG C 33.206 0.1 1 147 . 17 GLN HG2 H 2.539 0.03 2 148 . 17 GLN HG3 H 2.500 0.03 2 149 . 17 GLN NE2 N 114.465 0.1 1 150 . 17 GLN HE21 H 7.896 0.03 1 151 . 17 GLN HE22 H 6.793 0.03 1 152 . 18 PRO CA C 63.827 0.1 1 153 . 18 PRO HA H 4.417 0.03 1 154 . 18 PRO CB C 31.892 0.1 1 155 . 18 PRO HB2 H 2.230 0.03 2 156 . 18 PRO HB3 H 1.866 0.03 2 157 . 18 PRO CG C 27.658 0.1 1 158 . 18 PRO HG2 H 1.990 0.03 2 159 . 18 PRO HG3 H 1.795 0.03 2 160 . 18 PRO CD C 50.445 0.1 1 161 . 18 PRO HD2 H 3.767 0.03 2 162 . 18 PRO HD3 H 3.494 0.03 2 163 . 19 GLY H H 8.675 0.03 1 164 . 19 GLY N N 107.111 0.1 1 165 . 19 GLY CA C 45.429 0.1 1 166 . 19 GLY HA2 H 3.842 0.03 2 167 . 19 GLY HA3 H 3.955 0.03 2 168 . 19 GLY C C 174.543 0.1 1 169 . 20 THR H H 7.531 0.03 1 170 . 20 THR N N 112.095 0.1 1 171 . 20 THR CA C 60.702 0.1 1 172 . 20 THR HA H 4.578 0.03 1 173 . 20 THR C C 174.861 0.1 1 174 . 20 THR CB C 71.022 0.1 1 175 . 20 THR HB H 4.442 0.03 1 176 . 20 THR CG2 C 22.357 0.1 1 177 . 20 THR HG2 H 1.421 0.03 1 178 . 21 GLY H H 8.803 0.03 1 179 . 21 GLY N N 109.950 0.1 1 180 . 21 GLY CA C 45.108 0.1 1 181 . 21 GLY HA2 H 3.634 0.03 2 182 . 21 GLY HA3 H 4.086 0.03 2 183 . 21 GLY C C 173.774 0.1 1 184 . 22 HIS H H 7.752 0.03 1 185 . 22 HIS N N 118.346 0.1 1 186 . 22 HIS CA C 55.411 0.1 1 187 . 22 HIS HA H 4.970 0.03 1 188 . 22 HIS C C 173.108 0.1 1 189 . 22 HIS CB C 33.222 0.1 1 190 . 22 HIS HB2 H 2.792 0.03 1 191 . 22 HIS HB3 H 2.688 0.03 1 192 . 22 HIS CD2 C 119.788 0.1 1 193 . 22 HIS HD2 H 6.821 0.03 1 194 . 23 CYS H H 8.752 0.03 1 195 . 23 CYS N N 123.825 0.1 1 196 . 23 CYS CA C 58.886 0.1 1 197 . 23 CYS HA H 4.191 0.03 1 198 . 23 CYS C C 178.097 0.1 1 199 . 23 CYS CB C 31.479 0.1 1 200 . 23 CYS HB2 H 3.308 0.03 1 201 . 23 CYS HB3 H 3.061 0.03 1 202 . 24 GLU H H 9.220 0.03 1 203 . 24 GLU N N 131.223 0.1 1 204 . 24 GLU CA C 58.688 0.1 1 205 . 24 GLU HA H 3.946 0.03 1 206 . 24 GLU C C 176.445 0.1 1 207 . 24 GLU CB C 30.938 0.1 1 208 . 24 GLU HB2 H 2.114 0.03 1 209 . 24 GLU HB3 H 1.934 0.03 1 210 . 24 GLU CG C 36.688 0.1 1 211 . 24 GLU HG2 H 2.292 0.03 2 212 . 24 GLU HG3 H 2.144 0.03 2 213 . 25 MET H H 8.752 0.03 1 214 . 25 MET N N 119.906 0.1 1 215 . 25 MET CA C 55.887 0.1 1 216 . 25 MET HA H 4.332 0.03 1 217 . 25 MET C C 177.440 0.1 1 218 . 25 MET CB C 32.652 0.1 1 219 . 25 MET HB2 H 1.854 0.03 2 220 . 25 MET HB3 H 1.107 0.03 2 221 . 25 MET CG C 31.762 0.1 1 222 . 25 MET HG2 H 1.898 0.03 2 223 . 25 MET HG3 H 1.541 0.03 2 224 . 26 CYS H H 8.539 0.03 1 225 . 26 CYS N N 119.610 0.1 1 226 . 26 CYS CA C 59.160 0.1 1 227 . 26 CYS HA H 4.918 0.03 1 228 . 26 CYS C C 176.653 0.1 1 229 . 26 CYS CB C 31.792 0.1 1 230 . 26 CYS HB2 H 3.157 0.03 1 231 . 26 CYS HB3 H 2.647 0.03 1 232 . 27 SER H H 7.636 0.03 1 233 . 27 SER N N 115.915 0.1 1 234 . 27 SER CA C 61.815 0.1 1 235 . 27 SER HA H 4.397 0.03 1 236 . 27 SER C C 173.387 0.1 1 237 . 27 SER CB C 63.024 0.1 1 238 . 27 SER HB2 H 4.139 0.03 2 239 . 27 SER HB3 H 3.893 0.03 2 240 . 28 LEU H H 8.141 0.03 1 241 . 28 LEU N N 125.111 0.1 1 242 . 28 LEU CA C 54.499 0.1 1 243 . 28 LEU HA H 4.576 0.03 1 244 . 28 LEU C C 176.468 0.1 1 245 . 28 LEU CB C 39.741 0.1 1 246 . 28 LEU HB2 H 1.831 0.03 1 247 . 28 LEU HB3 H 1.257 0.03 1 248 . 28 LEU CG C 27.518 0.1 1 249 . 28 LEU CD1 C 22.246 0.1 1 250 . 28 LEU HD1 H 0.712 0.03 2 251 . 28 LEU CD2 C 24.277 0.1 1 252 . 28 LEU HD2 H 0.410 0.03 2 253 . 28 LEU HG H 1.652 0.03 1 254 . 29 PRO CA C 62.595 0.1 1 255 . 29 PRO HA H 4.446 0.03 1 256 . 29 PRO C C 175.859 0.1 1 257 . 29 PRO CB C 32.200 0.1 1 258 . 29 PRO HB2 H 2.010 0.03 2 259 . 29 PRO HB3 H 1.816 0.03 2 260 . 29 PRO CG C 27.370 0.1 1 261 . 29 PRO HG2 H 2.007 0.03 2 262 . 29 PRO CD C 50.791 0.1 1 263 . 29 PRO HD2 H 3.886 0.03 2 264 . 29 PRO HD3 H 3.648 0.03 2 265 . 30 ARG H H 7.594 0.03 1 266 . 30 ARG N N 121.538 0.1 1 267 . 30 ARG CA C 57.072 0.1 1 268 . 30 ARG HA H 3.756 0.03 1 269 . 30 ARG C C 175.709 0.1 1 270 . 30 ARG CB C 30.718 0.1 1 271 . 30 ARG HB2 H 0.984 0.03 1 272 . 30 ARG HB3 H 0.488 0.03 1 273 . 30 ARG CG C 25.804 0.1 1 274 . 30 ARG HG2 H 0.841 0.03 2 275 . 30 ARG HG3 H 0.293 0.03 2 276 . 30 ARG CD C 43.197 0.1 1 277 . 30 ARG HD2 H 2.068 0.03 2 278 . 30 ARG HD3 H 1.234 0.03 2 279 . 31 THR H H 7.483 0.03 1 280 . 31 THR N N 122.118 0.1 1 281 . 31 THR CA C 62.794 0.1 1 282 . 31 THR HA H 4.016 0.03 1 283 . 31 THR C C 178.807 0.1 1 284 . 31 THR CB C 70.928 0.1 1 285 . 31 THR HB H 4.100 0.03 1 286 . 31 THR CG2 C 22.075 0.1 1 287 . 31 THR HG2 H 1.040 0.03 1 stop_ save_