data_5534 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; Global structure and dynamics of human apolipoprotein CII in complex with micelles: evidence for increased mobility of the helix involved in the activation of lipoprotein lipase ; _BMRB_accession_number 5534 _BMRB_flat_file_name bmr5534.str _Entry_type original _Submission_date 2002-09-18 _Accession_date 2002-09-18 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Zdunek Janusz . . 2 Martinez Gary V. . 3 Schleucher Jurgen . . 4 Lycksell Per-Olof . . 5 Yin Yinliang . . 6 Nilsson Solveig . . 7 Shen Yan . . 8 Olivecrona Gunilla . . 9 Wijmenga Sybren . . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 1 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 138 "13C chemical shifts" 134 "15N chemical shifts" 68 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2003-03-14 original author . stop_ _Original_release_date 2003-03-14 save_ ############################# # Citation for this entry # ############################# save_entry_citation _Saveframe_category entry_citation _Citation_full . _Citation_title ; Global Structure and Dynamics of Human Apolipoprotein CII in Complex with Micelles: Evidence for Increased Mobility of the Helix involved in the Activation of Lipoprotein Lipase ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code 22478854 _PubMed_ID 12590574 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Zdunek Janusz . . 2 Martinez Gary V. . 3 Schleucher Jurgen . . 4 Lycksell Per-Olof . . 5 Yin Yinliang . . 6 Nilsson Solveig . . 7 Shen Yan . . 8 Olivecrona Gunilla . . 9 Wijmenga Sybren . . stop_ _Journal_abbreviation Biochemistry _Journal_volume 42 _Journal_issue 7 _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first 1872 _Page_last 1889 _Year 2003 _Details . loop_ _Keyword ApoCII LPL NMR dynamics 'global structure' 'local structure' 'activation mechanism' 'domain motion' helix SDS micelle stop_ save_ ####################################### # Cited references within the entry # ####################################### save_ref_1 _Saveframe_category citation _Citation_full ; Larsson, G., Martinez, G., Schleucher, J., Wijmenga, S.S. (2002) Detection of nanosecond internal motion and determination of overall tumbling times from NMR relaxation data; submitted ; _Citation_title 'Detection of nano-second internal motion and determination of overall tumbling times independent of the time scale of internal motion in proteins from NMR relaxation data.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 14512728 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Larsson Goran . . 2 Martinez Gary . . 3 Schleucher Jurgen . . 4 Wijmenga 'Sybren S' S. . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 27 _Journal_issue 4 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 291 _Page_last 312 _Year 2003 _Details ; The usual analysis of (15)N relaxation data of proteins is straightforward as long as the assumption can be made that the backbone of most residues only undergoes fast (ps), small amplitude internal motions. If this assumption cannot be made, as for example for proteins which undergo domain motions or for unfolded or partially folded proteins, one needs a method to establish for each residue whether it undergoes fast (ps) or slow (ns) internal motion. Even then it is impossible to determine the correct overall tumbling time, tau(m)(0), via the usual method from the ratio of the longitudinal and transverse relaxation times, if the majority of residues do not undergo fast, small amplitude internal motions. The latter problem is solved when tau(m)(0) can be determined independent of the time scale, tau(i), or the amplitude, S(2), of the internal motion. We propose a new protocol, called PINATA, for analyzing (15)N relaxation data acquired at minimally two field strengths, where no a priori assumption about time scales or amplitude of internal motions needs to be made, and overall tumbling can either be isotropic or anisotropic. The protocol involves four steps. First, for each residue, it is detected whether it undergoes ps- or ns-internal motion, via the combination of the ratio of the longitudinal relaxation time at two fields and the hetero-nuclear NOE. Second, for each residue tau(m)(0) and the exchange broadening, Rex, are iteratively determined. The accuracy of the determination of tau(m)(0) is ca. +/-0.5 ns and of Rex ca +/- 0.7 s(-1), when the relaxation data are of good quality and tau(m)(0)>5 ns, S(2)>0.3, and tau(i)< approximately 3 ns. Third, given tau(m)(0) and Rex, step 1 is repeated to iteratively improve on the internal motion and obtain better estimates of the internal parameter values. Fourth, final time scales and amplitudes for internal motions are determined via grid search based fitting and chi(2)-analysis. The protocol was successfully tested on synthetic and experimental data sets. The synthetic dataset mimics internal motions on either fast or slow time scales, or a combination of both, of either small- or large amplitude, superimposed onto anisotropic overall motion. The procedures are incorporated into MATLAB scripts, which are available on request. ; save_ save_ref_2 _Saveframe_category citation _Citation_full ; Larsson, Wijmenga, Schleucher: J. Biomol. NMR 14 (1999), 169-174 ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details 'spin-lock HCANH' save_ ################################## # Molecular system description # ################################## save_system_ApoCII _Saveframe_category molecular_system _Mol_system_name 'Apolipoprotein CII in complex with SDS-micelles' _Abbreviation_common ApoCII _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label ApoCII $ApoCII stop_ _System_molecular_weight . _System_physical_state native _System_oligomer_state monomer _System_paramagnetic no _System_thiol_state 'not present' loop_ _Biological_function ; surface constituent of plasma lipoproteins, activator for lipoprotein lipase (LPL) lipid, transport in blood ; stop_ _Database_query_date . _Details . save_ ######################## # Monomeric polymers # ######################## save_ApoCII _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common 'Apolipoprotein CII' _Abbreviation_common ApoCII _Molecular_mass 8204 _Mol_thiol_state 'not present' _Details . ############################## # Polymer residue sequence # ############################## _Residue_count 79 _Mol_residue_sequence ; TQQPQQDEMPSPTFLTQVKE SLSSYWESAKTAAQNLYEKT YLPAVDEKLRDLYSKSTAAM STYTGIFTDQVLSVLKGEE ; loop_ _Residue_seq_code _Residue_label 1 THR 2 GLN 3 GLN 4 PRO 5 GLN 6 GLN 7 ASP 8 GLU 9 MET 10 PRO 11 SER 12 PRO 13 THR 14 PHE 15 LEU 16 THR 17 GLN 18 VAL 19 LYS 20 GLU 21 SER 22 LEU 23 SER 24 SER 25 TYR 26 TRP 27 GLU 28 SER 29 ALA 30 LYS 31 THR 32 ALA 33 ALA 34 GLN 35 ASN 36 LEU 37 TYR 38 GLU 39 LYS 40 THR 41 TYR 42 LEU 43 PRO 44 ALA 45 VAL 46 ASP 47 GLU 48 LYS 49 LEU 50 ARG 51 ASP 52 LEU 53 TYR 54 SER 55 LYS 56 SER 57 THR 58 ALA 59 ALA 60 MET 61 SER 62 THR 63 TYR 64 THR 65 GLY 66 ILE 67 PHE 68 THR 69 ASP 70 GLN 71 VAL 72 LEU 73 SER 74 VAL 75 LEU 76 LYS 77 GLY 78 GLU 79 GLU stop_ _Sequence_homology_query_date . _Sequence_homology_query_revised_last_date 2015-01-28 loop_ _Database_name _Database_accession_code _Database_entry_mol_name _Sequence_query_to_submitted_percentage _Sequence_subject_length _Sequence_identity _Sequence_positive _Sequence_homology_expectation_value BMRB 6143 apolipoprotein_C-II 100.00 79 100.00 100.00 1.82e-48 PDB 1I5J "Nmr Structure Of Human Apolipoprotein C-Ii In The Presence Of Sds" 100.00 79 100.00 100.00 1.82e-48 PDB 1O8T "Global Structure And Dynamics Of Human Apolipoprotein Cii In Complex With Micelles: Evidence For Increased Mobility Of The Heli" 100.00 79 100.00 100.00 1.82e-48 PDB 1SOH "The Structure Of Human Apolipoprotein C-Ii In Dodecyl Phosphocholine" 100.00 79 100.00 100.00 1.82e-48 EMBL CAA25234 "apoCII protein [Homo sapiens]" 100.00 101 100.00 100.00 2.73e-48 EMBL CAA28798 "unnamed protein product [Homo sapiens]" 100.00 101 100.00 100.00 2.73e-48 GB AAA51743 "apolipoprotein C-II, partial [Homo sapiens]" 100.00 91 100.00 100.00 2.27e-48 GB AAA98743 "apolipoprotein CII [Homo sapiens]" 78.48 84 100.00 100.00 5.45e-35 GB AAB21042 "apolipoprotein CII, apoCII [human, Peptide, 79 aa]" 100.00 79 100.00 100.00 1.82e-48 GB AAB59380 "apolipoprotein C-II [Homo sapiens]" 100.00 101 100.00 100.00 2.73e-48 GB AAH05348 "Apolipoprotein C-II [Homo sapiens]" 100.00 101 98.73 98.73 2.11e-47 PRF 1303321A "apolipoprotein CII" 100.00 91 100.00 100.00 2.27e-48 REF NP_000474 "apolipoprotein C-II precursor [Homo sapiens]" 100.00 101 100.00 100.00 2.73e-48 REF NP_001230828 "apolipoprotein C-II precursor [Pan troglodytes]" 100.00 101 98.73 98.73 3.75e-47 REF XP_008969010 "PREDICTED: apolipoprotein C-II [Pan paniscus]" 100.00 101 98.73 98.73 3.75e-47 SP P02655 "RecName: Full=Apolipoprotein C-II; Short=Apo-CII; Short=ApoC-II; AltName: Full=Apolipoprotein C2; Contains: RecName: Full=Proap" 100.00 101 100.00 100.00 2.73e-48 stop_ save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species _Tissue _Gene_mnemonic $ApoCII Human 9606 Eukaryota Metazoa Homo sapiens liver apoCII stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_name $ApoCII 'recombinant technology' 'E. coli' Escherichia coli BL21(DE3) . stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_sample_1 _Saveframe_category sample _Sample_type micelles _Details SDS-micelle, loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $ApoCII 0.5 mM '[U-13C; U-15N]' SDS 380 mM [U-2H] stop_ save_ ############################ # Computer software used # ############################ save_XWIN-NMR _Saveframe_category software _Name XWIN-NMR _Version . loop_ _Task acquisition processing stop_ _Details . save_ save_XEASY _Saveframe_category software _Name XEASY _Version . loop_ _Task assignment stop_ _Details . save_ save_SYBYL _Saveframe_category software _Name SYBYL _Version . loop_ _Task 'integration of relaxation data' stop_ _Details . save_ save_PINATA _Saveframe_category software _Name PINATA _Version . loop_ _Task 'analysis of relaxation data' stop_ _Details ; a package of MATLAB scripts for analysis of relaxation data collected at multiple spectrometer frequencies. As main feature, the analysis allows to detect nanosecond internal motions even if most residues are affected. ; _Citation_label $ref_1 save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_NMR_spectrometer_1 _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model DRX _Field_strength 600 _Details 'assignment, relaxation' save_ save_NMR_spectrometer_2 _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model DRX _Field_strength 400 _Details '15N T1, T2' save_ save_NMR_spectrometer_3 _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model AMXII _Field_strength 500 _Details '15N NOE' save_ ############################# # NMR applied experiments # ############################# save_CBCANH_1 _Saveframe_category NMR_applied_experiment _Experiment_name CBCANH _Sample_label $sample_1 save_ save_CBCA(CO)NH_2 _Saveframe_category NMR_applied_experiment _Experiment_name CBCA(CO)NH _Sample_label $sample_1 save_ save_CBCACO(N)H_3 _Saveframe_category NMR_applied_experiment _Experiment_name CBCACO(N)H _Sample_label $sample_1 save_ save_HNCO_4 _Saveframe_category NMR_applied_experiment _Experiment_name HNCO _Sample_label $sample_1 save_ save_spin-lock_HCANH_5 _Saveframe_category NMR_applied_experiment _Experiment_name 'spin-lock HCANH' _Sample_label $sample_1 save_ save_HCC(CO)NH_6 _Saveframe_category NMR_applied_experiment _Experiment_name HCC(CO)NH _Sample_label $sample_1 save_ save_1H-15N_NOESY-HSQC_7 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N NOESY-HSQC' _Sample_label $sample_1 save_ save_2D_NOESY_8 _Saveframe_category NMR_applied_experiment _Experiment_name '2D NOESY' _Sample_label $sample_1 save_ save_1H-15N_HNHA_9 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N HNHA' _Sample_label $sample_1 save_ save_15N_T1_10 _Saveframe_category NMR_applied_experiment _Experiment_name '15N T1' _Sample_label $sample_1 save_ save_15N_T2_11 _Saveframe_category NMR_applied_experiment _Experiment_name '15N T2' _Sample_label $sample_1 save_ save_15N-{1H}_NOE_12 _Saveframe_category NMR_applied_experiment _Experiment_name '15N-{1H} NOE' _Sample_label $sample_1 save_ save_NMR_spec_expt__0_1 _Saveframe_category NMR_applied_experiment _Experiment_name CBCANH _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_2 _Saveframe_category NMR_applied_experiment _Experiment_name CBCA(CO)NH _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_3 _Saveframe_category NMR_applied_experiment _Experiment_name CBCACO(N)H _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_4 _Saveframe_category NMR_applied_experiment _Experiment_name HNCO _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_5 _Saveframe_category NMR_applied_experiment _Experiment_name 'spin-lock HCANH' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_6 _Saveframe_category NMR_applied_experiment _Experiment_name HCC(CO)NH _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_7 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N NOESY-HSQC' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_8 _Saveframe_category NMR_applied_experiment _Experiment_name '2D NOESY' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_9 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N HNHA' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_10 _Saveframe_category NMR_applied_experiment _Experiment_name '15N T1' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_11 _Saveframe_category NMR_applied_experiment _Experiment_name '15N T2' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_12 _Saveframe_category NMR_applied_experiment _Experiment_name '15N-{1H} NOE' _BMRB_pulse_sequence_accession_number . _Details . save_ ####################### # Sample conditions # ####################### save_condition_1 _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH 4.5 0.2 n/a temperature 313 1 K stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis _Indirect_shift_ratio DSS H 1 'methyl protons' ppm 0.0 internal direct . . . 1.0 DSS N 15 'methyl protons' ppm 0.0 . indirect . . . 0.101329118 DSS C 13 'methyl protons' ppm 0.0 . indirect . . . 0.251449530 stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_shift_set_1 _Saveframe_category assigned_chemical_shifts _Details . loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $condition_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name ApoCII _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 3 GLN H H 8.378 . 1 2 . 3 GLN HA H 4.458 . 1 3 . 3 GLN CA C 53.755 . 1 4 . 3 GLN CB C 29.164 . 1 5 . 3 GLN N N 122.348 . 1 6 . 5 GLN H H 8.372 . 1 7 . 5 GLN HA H 4.479 . 1 8 . 5 GLN CA C 56.002 . 1 9 . 5 GLN CB C 29.485 . 1 10 . 5 GLN N N 119.926 . 1 11 . 6 GLN H H 8.290 . 1 12 . 6 GLN HA H 4.394 . 1 13 . 6 GLN CA C 56.194 . 1 14 . 6 GLN CB C 29.525 . 1 15 . 6 GLN N N 120.788 . 1 16 . 7 ASP H H 8.314 . 1 17 . 7 ASP HA H 4.342 . 1 18 . 7 ASP CA C 54.397 . 1 19 . 7 ASP CB C 40.464 . 1 20 . 7 ASP N N 119.996 . 1 21 . 8 GLU H H 8.113 . 1 22 . 8 GLU HA H 4.426 . 1 23 . 8 GLU CA C 56.130 . 1 24 . 8 GLU CB C 29.806 . 1 25 . 8 GLU N N 119.805 . 1 26 . 9 MET H H 8.096 . 1 27 . 9 MET HA H 4.394 . 1 28 . 9 MET CA C 53.305 . 1 29 . 9 MET CB C 32.695 . 1 30 . 9 MET N N 121.538 . 1 31 . 11 SER H H 8.234 . 1 32 . 11 SER HA H 4.510 . 1 33 . 11 SER CA C 56.323 . 1 34 . 11 SER CB C 62.358 . 1 35 . 11 SER N N 116.619 . 1 36 . 13 THR H H 8.173 . 1 37 . 13 THR HA H 4.310 . 1 38 . 13 THR CA C 63.013 . 1 39 . 13 THR CB C 69.934 . 1 40 . 13 THR N N 113.621 . 1 41 . 15 LEU H H 8.372 . 1 42 . 15 LEU HA H 4.152 . 1 43 . 15 LEU CA C 58.007 . 1 44 . 15 LEU CB C 42.219 . 1 45 . 15 LEU N N 120.951 . 1 46 . 16 THR H H 8.211 . 1 47 . 16 THR HA H 4.447 . 1 48 . 16 THR CA C 64.284 . 1 49 . 16 THR CB C 69.164 . 1 50 . 16 THR N N 113.419 . 1 51 . 17 GLN H H 7.808 . 1 52 . 17 GLN HA H 4.279 . 1 53 . 17 GLN CA C 58.891 . 1 54 . 17 GLN CB C 28.458 . 1 55 . 17 GLN N N 120.951 . 1 56 . 18 VAL H H 8.001 . 1 57 . 18 VAL HA H 4.331 . 1 58 . 18 VAL CA C 66.104 . 1 59 . 18 VAL CB C 31.946 . 1 60 . 18 VAL N N 118.899 . 1 61 . 19 LYS H H 8.154 . 1 62 . 19 LYS HA H 3.868 . 1 63 . 19 LYS CA C 60.668 . 1 64 . 19 LYS CB C 31.989 . 1 65 . 19 LYS N N 119.303 . 1 66 . 20 GLU H H 8.117 . 1 67 . 20 GLU HA H 4.163 . 1 68 . 20 GLU CA C 59.019 . 1 69 . 20 GLU CB C 28.563 . 1 70 . 20 GLU N N 117.021 . 1 71 . 21 SER H H 7.978 . 1 72 . 21 SER HA H 4.310 . 1 73 . 21 SER CA C 61.760 . 1 74 . 21 SER CB C 63.208 . 1 75 . 21 SER N N 115.541 . 1 76 . 22 LEU H H 8.263 . 1 77 . 22 LEU HA H 4.405 . 1 78 . 22 LEU CA C 57.992 . 1 79 . 22 LEU CB C 42.069 . 1 80 . 22 LEU N N 120.642 . 1 81 . 23 SER H H 7.811 . 1 82 . 23 SER HA H 4.236 . 1 83 . 23 SER CA C 61.413 . 1 84 . 23 SER CB C 62.852 . 1 85 . 23 SER N N 113.335 . 1 86 . 24 SER H H 7.929 . 1 87 . 24 SER HA H 4.131 . 1 88 . 24 SER CA C 61.333 . 1 89 . 24 SER CB C 62.743 . 1 90 . 24 SER N N 116.634 . 1 91 . 25 TYR H H 7.959 . 1 92 . 25 TYR HA H 4.405 . 1 93 . 25 TYR CA C 60.540 . 1 94 . 25 TYR CB C 38.540 . 1 95 . 25 TYR N N 121.288 . 1 96 . 26 TRP H H 8.491 . 1 97 . 26 TRP HA H 4.753 . 1 98 . 26 TRP CA C 59.810 . 1 99 . 26 TRP CB C 30.450 . 1 100 . 26 TRP N N 120.529 . 1 101 . 27 GLU H H 8.265 . 1 102 . 27 GLU HA H 3.857 . 1 103 . 27 GLU CA C 59.420 . 1 104 . 27 GLU CB C 28.095 . 1 105 . 27 GLU N N 116.454 . 1 106 . 29 ALA H H 8.452 . 1 107 . 29 ALA HA H 4.036 . 1 108 . 29 ALA CA C 55.298 . 1 109 . 29 ALA CB C 18.541 . 1 110 . 29 ALA N N 125.878 . 1 111 . 30 LYS H H 8.148 . 1 112 . 30 LYS HA H 4.163 . 1 113 . 30 LYS CA C 60.267 . 1 114 . 30 LYS CB C 31.692 . 1 115 . 30 LYS N N 116.811 . 1 116 . 31 THR H H 7.666 . 1 117 . 31 THR HA H 3.983 . 1 118 . 31 THR CA C 66.200 . 1 119 . 31 THR CB C 68.671 . 1 120 . 31 THR N N 114.538 . 1 121 . 32 ALA H H 7.955 . 1 122 . 32 ALA HA H 4.279 . 1 123 . 32 ALA CA C 55.068 . 1 124 . 32 ALA CB C 18.570 . 1 125 . 32 ALA N N 124.447 . 1 126 . 33 ALA H H 8.402 . 1 127 . 33 ALA HA H 4.026 . 1 128 . 33 ALA CA C 55.360 . 1 129 . 33 ALA CB C 18.506 . 1 130 . 33 ALA N N 119.698 . 1 131 . 34 GLN H H 8.028 . 1 132 . 34 GLN HA H 4.005 . 1 133 . 34 GLN CA C 59.148 . 1 134 . 34 GLN CB C 28.346 . 1 135 . 34 GLN N N 116.182 . 1 136 . 35 ASN H H 8.046 . 1 137 . 35 ASN HA H 4.563 . 1 138 . 35 ASN CA C 55.552 . 1 139 . 35 ASN CB C 38.602 . 1 140 . 35 ASN N N 117.144 . 1 141 . 36 LEU H H 8.096 . 1 142 . 36 LEU HA H 4.206 . 1 143 . 36 LEU CA C 57.542 . 1 144 . 36 LEU CB C 42.269 . 1 145 . 36 LEU N N 120.313 . 1 146 . 37 TYR H H 8.341 . 1 147 . 37 TYR HA H 4.257 . 1 148 . 37 TYR CA C 60.516 . 1 149 . 37 TYR CB C 38.662 . 1 150 . 37 TYR N N 119.525 . 1 151 . 38 GLU H H 7.907 . 1 152 . 38 GLU HA H 4.120 . 1 153 . 38 GLU CA C 57.416 . 1 154 . 38 GLU CB C 28.975 . 1 155 . 38 GLU N N 116.536 . 1 156 . 39 LYS H H 7.702 . 1 157 . 39 LYS HA H 4.331 . 1 158 . 39 LYS CA C 57.020 . 1 159 . 39 LYS CB C 32.753 . 1 160 . 39 LYS N N 117.370 . 1 161 . 40 THR H H 7.576 . 1 162 . 40 THR HA H 4.321 . 1 163 . 40 THR CA C 62.697 . 1 164 . 40 THR CB C 69.852 . 1 165 . 40 THR N N 113.168 . 1 166 . 41 TYR H H 8.014 . 1 167 . 41 TYR HA H 4.458 . 1 168 . 41 TYR CA C 57.428 . 1 169 . 41 TYR CB C 38.689 . 1 170 . 41 TYR N N 122.214 . 1 171 . 44 ALA H H 7.760 . 1 172 . 44 ALA HA H 4.352 . 1 173 . 44 ALA CA C 54.424 . 1 174 . 44 ALA CB C 19.036 . 1 175 . 44 ALA N N 119.282 . 1 176 . 45 VAL H H 7.621 . 1 177 . 45 VAL HA H 3.752 . 1 178 . 45 VAL CA C 65.633 . 1 179 . 45 VAL CB C 31.797 . 1 180 . 45 VAL N N 118.551 . 1 181 . 46 ASP H H 8.343 . 1 182 . 46 ASP HA H 4.352 . 1 183 . 46 ASP CA C 56.761 . 1 184 . 46 ASP CB C 39.212 . 1 185 . 46 ASP N N 118.821 . 1 186 . 47 GLU H H 7.928 . 1 187 . 47 GLU HA H 4.616 . 1 188 . 47 GLU CA C 59.218 . 1 189 . 47 GLU CB C 28.763 . 1 190 . 47 GLU N N 117.366 . 1 191 . 49 LEU H H 8.419 . 1 192 . 49 LEU HA H 4.131 . 1 193 . 49 LEU CA C 58.409 . 1 194 . 49 LEU CB C 41.453 . 1 195 . 49 LEU N N 118.929 . 1 196 . 50 ARG H H 8.175 . 1 197 . 50 ARG HA H 4.068 . 1 198 . 50 ARG CA C 60.306 . 1 199 . 50 ARG CB C 29.828 . 1 200 . 50 ARG N N 118.267 . 1 201 . 51 ASP H H 8.171 . 1 202 . 51 ASP HA H 4.574 . 1 203 . 51 ASP CA C 57.029 . 1 204 . 51 ASP CB C 40.207 . 1 205 . 51 ASP N N 120.660 . 1 206 . 53 TYR H H 8.729 . 1 207 . 53 TYR HA H 4.194 . 1 208 . 53 TYR CA C 61.861 . 1 209 . 53 TYR CB C 38.581 . 1 210 . 53 TYR N N 121.300 . 1 211 . 54 SER H H 8.379 . 1 212 . 54 SER HA H 4.152 . 1 213 . 54 SER CA C 61.524 . 1 214 . 54 SER CB C 62.936 . 1 215 . 54 SER N N 115.594 . 1 216 . 55 LYS H H 8.045 . 1 217 . 55 LYS HA H 4.163 . 1 218 . 55 LYS CA C 58.692 . 1 219 . 55 LYS CB C 32.777 . 1 220 . 55 LYS N N 120.859 . 1 221 . 56 SER H H 8.168 . 1 222 . 56 SER HA H 4.257 . 1 223 . 56 SER CA C 61.716 . 1 224 . 56 SER CB C 63.321 . 1 225 . 56 SER N N 115.824 . 1 226 . 57 THR H H 7.932 . 1 227 . 57 THR HA H 4.405 . 1 228 . 57 THR CA C 64.630 . 1 229 . 57 THR CB C 69.054 . 1 230 . 57 THR N N 113.592 . 1 231 . 58 ALA H H 7.685 . 1 232 . 58 ALA HA H 4.257 . 1 233 . 58 ALA CA C 54.461 . 1 234 . 58 ALA CB C 18.506 . 1 235 . 58 ALA N N 124.733 . 1 236 . 59 ALA H H 7.886 . 1 237 . 59 ALA HA H 4.310 . 1 238 . 59 ALA CA C 54.140 . 1 239 . 59 ALA CB C 18.955 . 1 240 . 59 ALA N N 120.993 . 1 241 . 60 MET H H 8.087 . 1 242 . 60 MET HA H 4.384 . 1 243 . 60 MET CA C 59.345 . 1 244 . 60 MET CB C 32.603 . 1 245 . 60 MET N N 116.355 . 1 246 . 61 SER H H 7.864 . 1 247 . 61 SER HA H 4.447 . 1 248 . 61 SER CA C 61.716 . 1 249 . 61 SER CB C 63.321 . 1 250 . 61 SER N N 114.279 . 1 251 . 62 THR H H 7.740 . 1 252 . 62 THR HA H 4.405 . 1 253 . 62 THR CA C 63.914 . 1 254 . 62 THR CB C 69.167 . 1 255 . 62 THR N N 115.334 . 1 256 . 63 TYR H H 7.842 . 1 257 . 63 TYR HA H 4.637 . 1 258 . 63 TYR CA C 58.905 . 1 259 . 63 TYR CB C 38.673 . 1 260 . 63 TYR N N 120.845 . 1 261 . 64 THR H H 7.913 . 1 262 . 64 THR HA H 4.257 . 1 263 . 64 THR CA C 63.698 . 1 264 . 64 THR CB C 69.295 . 1 265 . 64 THR N N 113.427 . 1 266 . 65 GLY H H 7.909 . 1 267 . 65 GLY HA2 H 4.026 . 1 268 . 65 GLY HA3 H 4.026 . 1 269 . 65 GLY CA C 46.236 . 1 270 . 65 GLY N N 111.002 . 1 271 . 66 ILE H H 7.672 . 1 272 . 66 ILE HA H 4.081 . 1 273 . 66 ILE CA C 63.375 . 1 274 . 66 ILE CB C 38.279 . 1 275 . 66 ILE N N 119.239 . 1 276 . 67 PHE H H 8.105 . 1 277 . 67 PHE HA H 4.584 . 1 278 . 67 PHE CA C 60.050 . 1 279 . 67 PHE CB C 39.105 . 1 280 . 67 PHE N N 119.721 . 1 281 . 68 THR H H 8.071 . 1 282 . 68 THR HA H 4.342 . 1 283 . 68 THR CA C 64.937 . 1 284 . 68 THR CB C 69.017 . 1 285 . 68 THR N N 112.730 . 1 286 . 69 ASP H H 8.194 . 1 287 . 69 ASP HA H 4.574 . 1 288 . 69 ASP CA C 56.130 . 1 289 . 69 ASP CB C 39.758 . 1 290 . 69 ASP N N 119.328 . 1 291 . 70 GLN H H 8.089 . 1 292 . 70 GLN HA H 4.279 . 1 293 . 70 GLN CA C 58.083 . 1 294 . 70 GLN CB C 28.672 . 1 295 . 70 GLN N N 118.662 . 1 296 . 71 VAL H H 7.935 . 1 297 . 71 VAL HA H 3.752 . 1 298 . 71 VAL CA C 65.946 . 1 299 . 71 VAL CB C 31.615 . 1 300 . 71 VAL N N 118.876 . 1 301 . 72 LEU H H 8.105 . 1 302 . 72 LEU HA H 4.057 . 1 303 . 72 LEU CA C 57.695 . 1 304 . 72 LEU CB C 41.264 . 1 305 . 72 LEU N N 118.214 . 1 306 . 73 SER H H 7.777 . 1 307 . 73 SER HA H 4.047 . 1 308 . 73 SER CA C 61.332 . 1 309 . 73 SER CB C 62.897 . 1 310 . 73 SER N N 113.143 . 1 311 . 74 VAL H H 7.518 . 1 312 . 74 VAL HA H 4.005 . 1 313 . 74 VAL CA C 64.844 . 1 314 . 74 VAL CB C 31.839 . 1 315 . 74 VAL N N 120.349 . 1 316 . 75 LEU H H 7.811 . 1 317 . 75 LEU HA H 4.226 . 1 318 . 75 LEU CA C 56.918 . 1 319 . 75 LEU CB C 42.371 . 1 320 . 75 LEU N N 119.204 . 1 321 . 76 LYS H H 7.949 . 1 322 . 76 LYS HA H 4.352 . 1 323 . 76 LYS CA C 56.864 . 1 324 . 76 LYS CB C 32.915 . 1 325 . 76 LYS N N 116.380 . 1 326 . 77 GLY H H 7.827 . 1 327 . 77 GLY HA2 H 4.057 . 1 328 . 77 GLY HA3 H 4.057 . 1 329 . 77 GLY CA C 45.882 . 1 330 . 77 GLY N N 107.993 . 1 331 . 78 GLU H H 8.084 . 1 332 . 78 GLU HA H 4.416 . 1 333 . 78 GLU CA C 55.958 . 1 334 . 78 GLU CB C 29.730 . 1 335 . 78 GLU N N 119.601 . 1 336 . 79 GLU H H 7.919 . 1 337 . 79 GLU HA H 4.431 . 1 338 . 79 GLU CA C 57.619 . 1 339 . 79 GLU CB C 30.127 . 1 340 . 79 GLU N N 125.557 . 1 stop_ save_