data_5379 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; Bovine Pancreatic Polypeptide Bound to DPC Micelles ; _BMRB_accession_number 5379 _BMRB_flat_file_name bmr5379.str _Entry_type original _Submission_date 2002-05-27 _Accession_date 2002-05-28 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Lerch Mirjam S. . 2 Gafner Verena . . 3 Bader Reto U. . 4 Christen Barbara . . 5 Zerbe Oliver . . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 1 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 225 "15N chemical shifts" 30 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2008-07-27 update BMRB 'Updating non-standard residue' 2003-05-09 update BMRB 'addition of the relationship loop' 2003-02-20 original author 'original release' stop_ loop_ _Related_BMRB_accession_number _Relationship 5548 'relaxation data for this peptide' stop_ save_ ############################# # Citation for this entry # ############################# save_entry_citation _Saveframe_category entry_citation _Citation_full . _Citation_title ; Bovine Pancreatic Polypeptide (bPP) undergoes Significant changes in Conformation and Dynamics upon Binding to DPC Micelles ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code 22255077 _PubMed_ID 12367532 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Lerch Mirjam S. . 2 Gafner Verena . . 3 Bader Reto U. . 4 Christen Barbara . . 5 Folkers Gerd . . 6 Zerbe Oliver . . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_volume 322 _Journal_issue 5 _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first 1117 _Page_last 1133 _Year 2002 _Details . loop_ _Keyword 'NMR micelle peptide hormone' stop_ save_ ####################################### # Cited references within the entry # ####################################### save_ref_1 _Saveframe_category citation _Citation_full ; Bartels, C., Xia, T.-h., Billeter, M., Guntert, P. & Wuthrich, K. (1995). The program XEASY for computer-supported spectral analysis of biological macromolecules. J. Biomol. NMR 6, 1-10. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref_2 _Saveframe_category citation _Citation_full ; Weiner, P. K., Kollman, P. A., Nguyen, D. T. & Case, D. A. (1986). An all-atom force field for simulations of proteins and nucleic acids. J. Comput. Chem. 7, 230-52. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref_3 _Saveframe_category citation _Citation_full ; Guntert, P., Mumenthaler, C. & Wuthrich, K. (1997). Torsion Angle Dynamics For NMR Structure Calculation With the New Program Dyana. J. Mol. Biol. 273, 283-298. ; _Citation_title 'Torsion angle dynamics for NMR structure calculation with the new program DYANA.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9367762 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Guntert P. . . 2 Mumenthaler C. . . 3 Wuthrich K. . . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of molecular biology' _Journal_volume 273 _Journal_issue 1 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 283 _Page_last 298 _Year 1997 _Details ; The new program DYANA (DYnamics Algorithm for Nmr Applications) for efficient calculation of three-dimensional protein and nucleic acid structures from distance constraints and torsion angle constraints collected by nuclear magnetic resonance (NMR) experiments performs simulated annealing by molecular dynamics in torsion angle space and uses a fast recursive algorithm to integrate the equations of motions. Torsion angle dynamics can be more efficient than molecular dynamics in Cartesian coordinate space because of the reduced number of degrees of freedom and the concomitant absence of high-frequency bond and angle vibrations, which allows for the use of longer time-steps and/or higher temperatures in the structure calculation. It also represents a significant advance over the variable target function method in torsion angle space with the REDAC strategy used by the predecessor program DIANA. DYANA computation times per accepted conformer in the "bundle" used to represent the NMR structure compare favorably with those of other presently available structure calculation algorithms, and are of the order of 160 seconds for a protein of 165 amino acid residues when using a DEC Alpha 8400 5/300 computer. Test calculations starting from conformers with random torsion angle values further showed that DYANA is capable of efficient calculation of high-quality protein structures with up to 400 amino acid residues, and of nucleic acid structures. ; save_ ################################## # Molecular system description # ################################## save_system_PP _Saveframe_category molecular_system _Mol_system_name 'PANCREATIC POLYPEPTIDE' _Abbreviation_common PP _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label 'pancreatic polypeptide' $PP stop_ _System_molecular_weight . _System_physical_state native _System_oligomer_state monomer _System_paramagnetic no _System_thiol_state 'not present' loop_ _Biological_function 'regulation of gastrointestinal function' stop_ _Database_query_date . _Details . save_ ######################## # Monomeric polymers # ######################## save_PP _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common 'Pancreatic polypeptide' _Abbreviation_common PP _Molecular_mass . _Mol_thiol_state 'not present' _Details . ############################## # Polymer residue sequence # ############################## _Residue_count 37 _Mol_residue_sequence ; APLEPEYPGDNATPEQMAQY AAELRRYINMLTRPRYX ; loop_ _Residue_seq_code _Residue_label 1 ALA 2 PRO 3 LEU 4 GLU 5 PRO 6 GLU 7 TYR 8 PRO 9 GLY 10 ASP 11 ASN 12 ALA 13 THR 14 PRO 15 GLU 16 GLN 17 MET 18 ALA 19 GLN 20 TYR 21 ALA 22 ALA 23 GLU 24 LEU 25 ARG 26 ARG 27 TYR 28 ILE 29 ASN 30 MET 31 LEU 32 THR 33 ARG 34 PRO 35 ARG 36 TYR 37 NH2 stop_ _Sequence_homology_query_date . _Sequence_homology_query_revised_last_date 2015-01-28 loop_ _Database_name _Database_accession_code _Database_entry_mol_name _Sequence_query_to_submitted_percentage _Sequence_subject_length _Sequence_identity _Sequence_positive _Sequence_homology_expectation_value BMRB 2223 pancreatic_polypeptide 97.22 36 100.00 100.00 3.35e-15 BMRB 5548 PP 97.22 36 100.00 100.00 3.35e-15 PDB 1BBA "Sequence-Specific 1h Nmr Assignments And Solution Structure Of Bovine Pancreatic Polypeptide" 97.22 36 100.00 100.00 3.35e-15 PDB 1LJV "Bovine Pancreatic Polypeptide Bound To Dpc Micelles" 97.22 37 100.00 100.00 3.70e-15 GB AAA98526 "pancreatic polypeptide [Bos taurus]" 97.22 131 100.00 100.00 2.91e-15 GB AAR11453 "pancreatic hormone [Ovis aries]" 97.22 78 97.14 97.14 1.90e-14 GB EFB29809 "hypothetical protein PANDA_008438 [Ailuropoda melanoleuca]" 97.22 95 97.14 97.14 4.12e-14 GB ELK14152 "MAGUK p55 subfamily member 2 [Pteropus alecto]" 97.22 656 97.14 97.14 3.59e-13 REF NP_776377 "pancreatic prohormone precursor [Bos taurus]" 97.22 95 100.00 100.00 1.82e-15 REF XP_002919776 "PREDICTED: pancreatic prohormone-like [Ailuropoda melanoleuca]" 97.22 95 97.14 97.14 4.12e-14 REF XP_003997019 "PREDICTED: pancreatic prohormone [Felis catus]" 97.22 95 97.14 97.14 3.09e-14 REF XP_004013021 "PREDICTED: pancreatic prohormone [Ovis aries]" 97.22 95 97.14 97.14 1.32e-14 REF XP_004286056 "PREDICTED: pancreatic prohormone [Orcinus orca]" 97.22 95 97.14 97.14 2.55e-14 SP P01301 "RecName: Full=Pancreatic prohormone; AltName: Full=Pancreatic polypeptide; Short=PP; Contains: RecName: Full=Pancreatic hormone" 97.22 78 97.14 97.14 1.90e-14 SP P01302 "RecName: Full=Pancreatic prohormone; AltName: Full=Pancreatic polypeptide; Short=PP; Contains: RecName: Full=Pancreatic hormone" 97.22 131 100.00 100.00 2.91e-15 SP P06884 "RecName: Full=Pancreatic prohormone; AltName: Full=Pancreatic polypeptide; Short=PP; Contains: RecName: Full=Pancreatic hormone" 97.22 66 97.14 97.14 3.70e-14 SP P39659 "RecName: Full=Pancreatic hormone; Short=PH; AltName: Full=Pancreatic polypeptide; Short=PP [Tapirus pinchaque]" 97.22 36 97.14 97.14 2.85e-14 TPG DAA18335 "TPA: pancreatic prohormone [Bos taurus]" 97.22 95 100.00 100.00 1.82e-15 stop_ save_ ###################### # Polymer residues # ###################### save_chem_comp_NH2 _Saveframe_category polymer_residue _Mol_type non-polymer _Name_common 'AMINO GROUP' _BMRB_code . _PDB_code NH2 _Standard_residue_derivative . _Molecular_mass 16.023 _Mol_paramagnetic . _Details ; Information obtained from PDB's Chemical Component Dictionary at http://wwpdb-remediation.rutgers.edu/downloads.html Downloaded on Thu Jul 14 16:09:34 2011 ; loop_ _Atom_name _PDB_atom_name _Atom_type _Atom_chirality _Atom_charge _Atom_oxidation_number _Atom_unpaired_electrons N N N . 0 . ? HN1 HN1 H . 0 . ? HN2 HN2 H . 0 . ? stop_ loop_ _Bond_order _Bond_atom_one_atom_name _Bond_atom_two_atom_name _PDB_bond_atom_one_atom_name _PDB_bond_atom_two_atom_name SING N HN1 ? ? SING N HN2 ? ? stop_ save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species _Organ $PP Bovine 9913 Eukaryota Metazoa Bos taurus pancreas stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_type _Vector_name $PP 'recombinant technology' 'E. coli' Escherichia coli BL21(DE3) plasmid . stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_sample_1 _Saveframe_category sample _Sample_type micelles _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $PP 3 mM '[U-95% 15N]' DPC-d38 300 mM . stop_ save_ ############################ # Computer software used # ############################ save_XWINNMR _Saveframe_category software _Name XWINNMR _Version 2.6 loop_ _Task processing stop_ _Details Bruker save_ save_XEASY _Saveframe_category software _Name XEASY _Version 1.53 loop_ _Task 'data analysis' stop_ _Details 'C. Bartels' _Citation_label $ref_1 save_ save_DYANA _Saveframe_category software _Name DYANA _Version 1.5 loop_ _Task 'structure solution' stop_ _Details 'P. Guentert' _Citation_label $ref_3 save_ save_AMBER _Saveframe_category software _Name AMBER _Version 6 loop_ _Task refinement stop_ _Details 'P. Kollman' _Citation_label $ref_2 save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_spectrometer_1 _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model AVANCE _Field_strength 600 _Details . save_ ############################# # NMR applied experiments # ############################# save_2D_NOESY_1 _Saveframe_category NMR_applied_experiment _Experiment_name '2D NOESY' _Sample_label $sample_1 save_ save_E-COSY_2 _Saveframe_category NMR_applied_experiment _Experiment_name E-COSY _Sample_label $sample_1 save_ ####################### # Sample conditions # ####################### save_sample_cond_1 _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH* 5.5 0.2 n/a temperature 310 0.01 K 'ionic strength' 0 . M pressure 1 . atm stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis _Indirect_shift_ratio DSS H 1 'methyl protons' ppm 0.0 internal direct . . . 1.000000000 DSS N 15 'methyl protons' ppm 0.0 . indirect . . . 0.101329118 stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_chemical_shift_set_1 _Saveframe_category assigned_chemical_shifts _Details . loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $sample_cond_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name 'pancreatic polypeptide' _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 1 ALA HA H 4.33 . . 2 . 1 ALA HB H 1.52 . . 3 . 2 PRO HA H 4.45 . . 4 . 2 PRO HB2 H 1.91 . . 5 . 2 PRO HB3 H 2.31 . . 6 . 2 PRO HG2 H 2.02 . . 7 . 2 PRO HG3 H 2.02 . . 8 . 2 PRO HD2 H 3.59 . . 9 . 2 PRO HD3 H 3.70 . . 10 . 3 LEU H H 8.28 . . 11 . 3 LEU HA H 4.26 . . 12 . 3 LEU HB2 H 1.64 . . 13 . 3 LEU HB3 H 1.64 . . 14 . 3 LEU HG H 1.62 . . 15 . 3 LEU HD1 H 0.88 . . 16 . 3 LEU HD2 H 0.92 . . 17 . 3 LEU N N 126.4 . . 18 . 4 GLU H H 8.12 . . 19 . 4 GLU HA H 4.59 . . 20 . 4 GLU HB2 H 1.84 . . 21 . 4 GLU HB3 H 2.01 . . 22 . 4 GLU HG2 H 2.25 . . 23 . 4 GLU HG3 H 2.25 . . 24 . 4 GLU N N 126.9 . . 25 . 5 PRO HA H 4.34 . . 26 . 5 PRO HB2 H 2.19 . . 27 . 5 PRO HB3 H 2.19 . . 28 . 5 PRO HD2 H 3.68 . . 29 . 5 PRO HD3 H 3.73 . . 30 . 6 GLU H H 8.30 . . 31 . 6 GLU HA H 4.20 . . 32 . 6 GLU HB2 H 1.85 . . 33 . 6 GLU HB3 H 1.90 . . 34 . 6 GLU HG2 H 2.20 . . 35 . 6 GLU HG3 H 2.20 . . 36 . 6 GLU N N 125.3 . . 37 . 7 TYR H H 8.20 . . 38 . 7 TYR HA H 4.81 . . 39 . 7 TYR HB2 H 2.89 . . 40 . 7 TYR HB3 H 3.03 . . 41 . 7 TYR HD1 H 7.14 . . 42 . 7 TYR HD2 H 7.14 . . 43 . 7 TYR HE1 H 6.81 . . 44 . 7 TYR HE2 H 6.81 . . 45 . 7 TYR N N 126.3 . . 46 . 8 PRO HA H 4.41 . . 47 . 8 PRO HB2 H 2.22 . . 48 . 8 PRO HB3 H 2.22 . . 49 . 8 PRO HG2 H 1.95 . . 50 . 8 PRO HG3 H 1.95 . . 51 . 8 PRO HD2 H 3.49 . . 52 . 8 PRO HD3 H 3.76 . . 53 . 9 GLY H H 7.81 . . 54 . 9 GLY HA2 H 3.89 . . 55 . 9 GLY HA3 H 3.95 . . 56 . 9 GLY N N 112.7 . . 57 . 10 ASP H H 8.15 . . 58 . 10 ASP HA H 4.55 . . 59 . 10 ASP HB2 H 2.61 . . 60 . 10 ASP HB3 H 2.65 . . 61 . 10 ASP N N 124.7 . . 62 . 11 ASN H H 8.31 . . 63 . 11 ASN HA H 4.70 . . 64 . 11 ASN HB2 H 2.72 . . 65 . 11 ASN HB3 H 2.82 . . 66 . 11 ASN HD21 H 6.84 . . 67 . 11 ASN HD22 H 7.55 . . 68 . 11 ASN ND2 N 122.9 . . 69 . 12 ALA H H 8.15 . . 70 . 12 ALA HA H 4.45 . . 71 . 12 ALA HB H 1.39 . . 72 . 12 ALA N N 128.3 . . 73 . 13 THR H H 8.13 . . 74 . 13 THR HA H 4.56 . . 75 . 13 THR HB H 4.44 . . 76 . 13 THR HG2 H 1.27 . . 77 . 13 THR N N 118.9 . . 78 . 14 PRO HA H 4.30 . . 79 . 14 PRO HB2 H 1.94 . . 80 . 14 PRO HB3 H 2.35 . . 81 . 14 PRO HG2 H 1.99 . . 82 . 14 PRO HG3 H 2.16 . . 83 . 14 PRO HD2 H 3.81 . . 84 . 14 PRO HD3 H 3.87 . . 85 . 15 GLU H H 8.52 . . 86 . 15 GLU HA H 4.10 . . 87 . 15 GLU HB2 H 2.02 . . 88 . 15 GLU HB3 H 2.32 . . 89 . 15 GLU HG2 H 1.95 . . 90 . 15 GLU HG3 H 1.95 . . 91 . 15 GLU N N 124.1 . . 92 . 16 GLN H H 8.15 . . 93 . 16 GLN HA H 4.05 . . 94 . 16 GLN HB2 H 2.02 . . 95 . 16 GLN HB3 H 2.16 . . 96 . 16 GLN HG2 H 2.32 . . 97 . 16 GLN HG3 H 2.32 . . 98 . 16 GLN HE21 H 6.84 . . 99 . 16 GLN HE22 H 7.23 . . 100 . 16 GLN N N 125.0 . . 101 . 17 MET H H 8.34 . . 102 . 17 MET HA H 4.26 . . 103 . 17 MET HB2 H 2.06 . . 104 . 17 MET HB3 H 2.22 . . 105 . 17 MET HG2 H 2.54 . . 106 . 17 MET HG3 H 2.69 . . 107 . 17 MET N N 122.2 . . 108 . 18 ALA H H 8.07 . . 109 . 18 ALA HA H 4.09 . . 110 . 18 ALA HB H 1.51 . . 111 . 18 ALA N N 125.7 . . 112 . 19 GLN H H 7.90 . . 113 . 19 GLN HA H 4.15 . . 114 . 19 GLN HB2 H 2.05 . . 115 . 19 GLN HB3 H 2.12 . . 116 . 19 GLN HG2 H 2.31 . . 117 . 19 GLN HG3 H 2.37 . . 118 . 19 GLN HE21 H 6.72 . . 119 . 19 GLN HE22 H 7.40 . . 120 . 19 GLN N N 123.3 . . 121 . 20 TYR H H 8.07 . . 122 . 20 TYR HA H 4.42 . . 123 . 20 TYR HB2 H 3.05 . . 124 . 20 TYR HB3 H 3.15 . . 125 . 20 TYR HD1 H 7.09 . . 126 . 20 TYR HD2 H 7.09 . . 127 . 20 TYR HE1 H 6.79 . . 128 . 20 TYR HE2 H 6.79 . . 129 . 20 TYR N N 124.1 . . 130 . 21 ALA H H 8.34 . . 131 . 21 ALA HA H 4.00 . . 132 . 21 ALA HB H 1.54 . . 133 . 21 ALA N N 125.7 . . 134 . 22 ALA H H 7.91 . . 135 . 22 ALA HA H 4.09 . . 136 . 22 ALA HB H 1.55 . . 137 . 22 ALA N N 124.0 . . 138 . 23 GLU H H 7.91 . . 139 . 23 GLU HA H 4.28 . . 140 . 23 GLU HB2 H 2.14 . . 141 . 23 GLU HB3 H 2.22 . . 142 . 23 GLU HG2 H 2.39 . . 143 . 23 GLU HG3 H 2.46 . . 144 . 23 GLU N N 123.9 . . 145 . 24 LEU H H 8.25 . . 146 . 24 LEU HA H 4.16 . . 147 . 24 LEU HB2 H 1.82 . . 148 . 24 LEU HB3 H 1.82 . . 149 . 24 LEU HG H 1.79 . . 150 . 24 LEU HD1 H 0.92 . . 151 . 24 LEU HD2 H 0.96 . . 152 . 24 LEU N N 124.4 . . 153 . 25 ARG H H 8.17 . . 154 . 25 ARG HA H 3.85 . . 155 . 25 ARG HB2 H 1.93 . . 156 . 25 ARG HB3 H 2.00 . . 157 . 25 ARG HG2 H 1.65 . . 158 . 25 ARG HG3 H 1.78 . . 159 . 25 ARG HD2 H 3.17 . . 160 . 25 ARG HD3 H 3.25 . . 161 . 25 ARG HE H 7.62 . . 162 . 25 ARG N N 122.1 . . 163 . 26 ARG H H 7.75 . . 164 . 26 ARG HA H 4.02 . . 165 . 26 ARG HB2 H 1.87 . . 166 . 26 ARG HB3 H 1.95 . . 167 . 26 ARG HG2 H 1.38 . . 168 . 26 ARG HG3 H 1.64 . . 169 . 26 ARG HD2 H 3.11 . . 170 . 26 ARG HD3 H 3.19 . . 171 . 26 ARG HE H 7.58 . . 172 . 26 ARG N N 124.3 . . 173 . 27 TYR H H 8.09 . . 174 . 27 TYR HA H 4.38 . . 175 . 27 TYR HB2 H 3.07 . . 176 . 27 TYR HB3 H 3.12 . . 177 . 27 TYR HD1 H 7.10 . . 178 . 27 TYR HD2 H 7.10 . . 179 . 27 TYR HE1 H 6.77 . . 180 . 27 TYR HE2 H 6.77 . . 181 . 27 TYR N N 123.8 . . 182 . 28 ILE H H 8.45 . . 183 . 28 ILE HA H 3.70 . . 184 . 28 ILE HB H 2.01 . . 185 . 28 ILE HG12 H 1.24 . . 186 . 28 ILE HG13 H 1.80 . . 187 . 28 ILE HG2 H 0.95 . . 188 . 28 ILE HD1 H 0.84 . . 189 . 28 ILE N N 123.4 . . 190 . 29 ASN H H 8.20 . . 191 . 29 ASN HA H 4.49 . . 192 . 29 ASN HB2 H 2.79 . . 193 . 29 ASN HB3 H 2.91 . . 194 . 29 ASN HD21 H 7.47 . . 195 . 29 ASN HD22 H 7.47 . . 196 . 29 ASN N N 123.1 . . 197 . 30 MET H H 7.84 . . 198 . 30 MET HA H 4.21 . . 199 . 30 MET HB2 H 2.20 . . 200 . 30 MET HB3 H 2.34 . . 201 . 30 MET HG2 H 2.61 . . 202 . 30 MET HG3 H 2.83 . . 203 . 30 MET HE H 2.02 . . 204 . 30 MET N N 122.8 . . 205 . 31 LEU H H 7.76 . . 206 . 31 LEU HA H 4.24 . . 207 . 31 LEU HB2 H 1.61 . . 208 . 31 LEU HB3 H 1.91 . . 209 . 31 LEU HG H 1.87 . . 210 . 31 LEU HD1 H 0.89 . . 211 . 31 LEU HD2 H 0.91 . . 212 . 31 LEU N N 122.6 . . 213 . 32 THR H H 7.67 . . 214 . 32 THR HA H 4.35 . . 215 . 32 THR HB H 4.31 . . 216 . 32 THR HG2 H 1.22 . . 217 . 32 THR N N 112.4 . . 218 . 33 ARG H H 7.84 . . 219 . 33 ARG HA H 4.48 . . 220 . 33 ARG HB2 H 1.73 . . 221 . 33 ARG HB3 H 1.87 . . 222 . 33 ARG HG2 H 1.87 . . 223 . 33 ARG HG3 H 1.87 . . 224 . 33 ARG HD2 H 3.20 . . 225 . 33 ARG HD3 H 3.20 . . 226 . 33 ARG HE H 7.33 . . 227 . 33 ARG N N 127.7 . . 228 . 34 PRO HA H 4.41 . . 229 . 34 PRO HB2 H 1.75 . . 230 . 34 PRO HB3 H 2.26 . . 231 . 34 PRO HG2 H 1.99 . . 232 . 34 PRO HG3 H 1.99 . . 233 . 34 PRO HD2 H 3.14 . . 234 . 34 PRO HD3 H 3.14 . . 235 . 35 ARG H H 8.21 . . 236 . 35 ARG HA H 4.23 . . 237 . 35 ARG HB2 H 1.70 . . 238 . 35 ARG HB3 H 1.70 . . 239 . 35 ARG HG2 H 1.49 . . 240 . 35 ARG HG3 H 1.54 . . 241 . 35 ARG HD2 H 3.58 . . 242 . 35 ARG HD3 H 3.02 . . 243 . 35 ARG HE H 7.31 . . 244 . 35 ARG N N 126.1 . . 245 . 36 TYR H H 7.94 . . 246 . 36 TYR HA H 4.54 . . 247 . 36 TYR HB2 H 2.88 . . 248 . 36 TYR HB3 H 3.09 . . 249 . 36 TYR HD1 H 7.12 . . 250 . 36 TYR HD2 H 7.12 . . 251 . 36 TYR HE1 H 6.81 . . 252 . 36 TYR HE2 H 6.81 . . 253 . 36 TYR N N 124.7 . . 254 . 37 NH2 HN1 H 7.02 . . 255 . 37 NH2 HN2 H 7.46 . . stop_ save_