data_5207 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; 1H Chemical Shifts for the Apo State of the F36G + P43M Mutant of Calbindin D9k ; _BMRB_accession_number 5207 _BMRB_flat_file_name bmr5207.str _Entry_type original _Submission_date 2001-11-14 _Accession_date 2001-11-14 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Nelson Melanie R. . 2 Thulin Eva . . 3 Fagan Patricia A. . 4 Forsen Sture . . 5 Chazin Walter J. . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 1 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 442 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2002-02-14 original author . stop_ loop_ _Related_BMRB_accession_number _Relationship 4581 'calbindin D9K N56A' stop_ _Original_release_date 2002-02-14 save_ ############################# # Citation for this entry # ############################# save_entry_citation _Saveframe_category entry_citation _Citation_full . _Citation_title 'The EF-hand Domain: A Globally Cooperative Structural unit' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code 21651052 _PubMed_ID 11790829 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Nelson Melanie R. . 2 Thulin Eva . . 3 Fagan Patricia A. . 4 Forsen Sture . . 5 Chazin Walter J. . stop_ _Journal_abbreviation 'Protein Sci.' _Journal_volume 11 _Journal_issue 2 _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first 198 _Page_last 205 _Year 2002 _Details . loop_ _Keyword calcium-binding EF-hand 'four helix bundle' protein 'structure perturbing mutation' stop_ save_ ####################################### # Cited references within the entry # ####################################### save_ref-1 _Saveframe_category citation _Citation_full ; Guntert P, Wuthrich K. Improved efficiency of protein structure calculations from NMR data using the program DIANA with redundant dihedral angle constraints. J Biomol NMR. 1991 Nov;1(4):447-56. ; _Citation_title 'Improved efficiency of protein structure calculations from NMR data using the program DIANA with redundant dihedral angle constraints.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 1841711 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Guntert P . . 2 Wuthrich K . . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 1 _Journal_issue 4 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 447 _Page_last 456 _Year 1991 _Details ; A new strategy for NMR structure calculations of proteins with the variable target function method (Braun, W. and Go, N. (1985) J. Mol. Biol., 186, 611) is described, which makes use of redundant dihedral angle constraints (REDAC) derived from preliminary calculations of the complete structure. The REDAC approach reduces the computation time for obtaining a group of acceptable conformers with the program DIANA 5-100-fold, depending on the complexity of the protein structure, and retains good sampling of conformation space. ; save_ save_ref-2 _Saveframe_category citation _Citation_full ; Guntert P, Braun W, Wuthrich K. Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J Mol Biol. 1991 Feb 5;217(3):517-30. ; _Citation_title 'Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 1847217 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Guntert P. . . 2 Braun W. . . 3 Wuthrich K. . . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of molecular biology' _Journal_volume 217 _Journal_issue 3 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 517 _Page_last 530 _Year 1991 _Details ; A novel procedure for efficient computation of three-dimensional protein structures from nuclear magnetic resonance (n.m.r.) data in solution is described, which is based on using the program DIANA in combination with the supporting programs CALIBA, HABAS and GLOMSA. The first part of this paper describes the new programs DIANA. CALIBA and GLOMSA. DIANA is a new, fully vectorized implementation of the variable target function algorithm for the computation of protein structures from n.m.r. data. Its main advantages, when compared to previously available programs using the variable target function algorithm, are a significant reduction of the computation time, and a novel treatment of experimental distance constraints involving diastereotopic groups of hydrogen atoms that were not individually assigned. CALIBA converts the measured nuclear Overhauser effects into upper distance limits and thus prepares the input for the previously described program HABAS and for DIANA. GLOMSA is used for obtaining individual assignments for pairs of diastereotopic substituents by comparison of the experimental constraints with preliminary results of the structure calculations. With its general outlay, the presently used combination of the four programs is particularly user-friendly. In the second part of the paper, initial results are presented on the influence of the novel DIANA treatment of diastereotopic protons on the quality of the structures obtained, and a systematic study of the central processing unit times needed for the same protein structure calculation on a range of different, commonly available computers is described. ; save_ save_ref-3 _Saveframe_category citation _Citation_full ; G. Gippert. New computational methods for 3D NMR analysis and protein structure determination in high-dimensional internal coordinate space. Ph.D Thesis, The Scripps Research Institute, 1995. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ ################################## # Molecular system description # ################################## save_system_F36G _Saveframe_category molecular_system _Mol_system_name 'CALBINDIN D9K' _Abbreviation_common F36G _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label 'CALBINDIN D9K F36G' $F36G stop_ _System_molecular_weight . _System_physical_state native _System_oligomer_state monomer _System_paramagnetic no _System_thiol_state 'not present' loop_ _Biological_function 'calcium-binding protein' stop_ _Database_query_date . _Details . save_ ######################## # Monomeric polymers # ######################## save_F36G _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common 'CALBINDIN D9K' _Name_variant F36G _Abbreviation_common F36G _Molecular_mass . _Mol_thiol_state 'not present' _Details ; The wild-type sequence contains Pro at position 43, but all biophysical studies have been carried out on the standard sequence that contains Met at position 43. The P43M is the background used in the Chazin lab to study all other calbindin D9k mutants. This mutation removes spectra-complicating cis-trans isomerization at Pro43 but does not otherwise affect the structure. ; ############################## # Polymer residue sequence # ############################## _Residue_count 76 _Mol_residue_sequence ; MKSPEELKGIFEKYAAKEGD PNQLSKEELKLLLQTEGPSL LKGMSTLDELFEELDKNGDG EVSFEEFQVLVKKISQ ; loop_ _Residue_seq_code _Residue_author_seq_code _Residue_label 1 0 MET 2 1 LYS 3 2 SER 4 3 PRO 5 4 GLU 6 5 GLU 7 6 LEU 8 7 LYS 9 8 GLY 10 9 ILE 11 10 PHE 12 11 GLU 13 12 LYS 14 13 TYR 15 14 ALA 16 15 ALA 17 16 LYS 18 17 GLU 19 18 GLY 20 19 ASP 21 20 PRO 22 21 ASN 23 22 GLN 24 23 LEU 25 24 SER 26 25 LYS 27 26 GLU 28 27 GLU 29 28 LEU 30 29 LYS 31 30 LEU 32 31 LEU 33 32 LEU 34 33 GLN 35 34 THR 36 35 GLU 37 36 GLY 38 37 PRO 39 38 SER 40 39 LEU 41 40 LEU 42 41 LYS 43 42 GLY 44 43 MET 45 44 SER 46 45 THR 47 46 LEU 48 47 ASP 49 48 GLU 50 49 LEU 51 50 PHE 52 51 GLU 53 52 GLU 54 53 LEU 55 54 ASP 56 55 LYS 57 56 ASN 58 57 GLY 59 58 ASP 60 59 GLY 61 60 GLU 62 61 VAL 63 62 SER 64 63 PHE 65 64 GLU 66 65 GLU 67 66 PHE 68 67 GLN 69 68 VAL 70 69 LEU 71 70 VAL 72 71 LYS 73 72 LYS 74 73 ILE 75 74 SER 76 75 GLN stop_ _Sequence_homology_query_date . _Sequence_homology_query_revised_last_date 2014-03-02 loop_ _Database_name _Database_accession_code _Database_entry_mol_name _Sequence_query_to_submitted_percentage _Sequence_subject_length _Sequence_identity _Sequence_positive _Sequence_homology_expectation_value BMRB 15594 calbindin_in_presence_of_Yb3+ 98.68 75 98.67 98.67 5.31e-41 BMRB 16340 Calbindin_D9K 100.00 76 97.37 97.37 7.20e-33 BMRB 247 calbindin 100.00 76 97.37 97.37 5.55e-33 BMRB 325 calbindin 100.00 76 97.37 97.37 5.55e-33 BMRB 326 calbindin 100.00 76 97.37 97.37 7.20e-33 BMRB 327 calbindin 100.00 76 97.37 97.37 7.20e-33 BMRB 4581 calbindin_N56A 98.68 75 97.33 97.33 2.69e-32 BMRB 6697 Calbindin_D9k 98.68 75 98.67 98.67 5.31e-41 BMRB 6699 Calbindin_D9k 98.68 75 98.67 98.67 5.31e-41 BMRB 753 calbindin 100.00 76 97.37 97.37 7.20e-33 BMRB 939 calbindin 100.00 76 97.37 97.37 7.20e-33 BMRB 940 calbindin 100.00 76 97.37 97.37 7.20e-33 PDB 1B1G "Solvated Refinement Of Ca-Loaded Calbindin D9k" 98.68 75 97.33 97.33 5.62e-32 PDB 1CDN "Solution Structure Of (Cd2+)1-Calbindin D9k Reveals Details Of The Stepwise Structural Changes Along The Apo--> (Ca2+) Ii1--> (" 100.00 76 97.37 97.37 7.20e-33 PDB 1CLB "Determination Of The Solution Structure Of Apo Calbindin D9k By Nmr Spectroscopy" 100.00 76 97.37 97.37 7.20e-33 PDB 1D1O "Cooperativity In Ef-Hand Ca2+-Binding Proteins: Evidence Of Site-Site Communication From Binding-Induced Changes In Structure A" 98.68 75 97.33 97.33 2.69e-32 PDB 1HT9 "Domain Swapping Ef-Hands" 100.00 76 97.37 97.37 1.74e-33 PDB 1IG5 "Bovine Calbindin D9k Binding Mg2+" 98.68 75 97.33 97.33 4.58e-32 PDB 1IGV "Bovine Calbindin D9k Binding Mn2+" 98.68 75 97.33 97.33 4.58e-32 PDB 1KCY "Nmr Solution Structure Of Apo Calbindin D9k (F36g + P43m Mutant)" 98.68 75 100.00 100.00 2.27e-42 PDB 1KQV "Family Of Nmr Solution Structures Of Ca Ln Calbindin D9k" 98.68 79 98.67 98.67 3.71e-41 PDB 1KSM "Average Nmr Solution Structure Of Ca Ln Calbindin D9k" 98.68 79 98.67 98.67 3.71e-41 PDB 1N65 "Family Of Nmr Solution Structures Of Ca Ce Calbindin D9k In Denaturating Conditions" 98.68 75 98.67 98.67 5.31e-41 PDB 2BCA "High-Resolution Solution Structure Of Calcium-Loaded Calbindin D9k" 100.00 76 97.37 97.37 7.20e-33 PDB 2BCB "High-Resolution Solution Structure Of Calcium-Loaded Calbindin D9k" 98.68 75 97.33 97.33 5.62e-32 PDB 2MAZ "Backbone 1h, 13c, And 15n Chemical Shift Assignments For Bovine Apo Calbindin" 98.68 75 98.67 98.67 5.31e-41 PDB 3ICB "The Refined Structure Of Vitamin D-Dependent Calcium- Binding Protein From Bovine Intestine. Molecular Details, Ion Binding, An" 98.68 75 97.33 97.33 4.58e-32 PDB 4ICB "Proline Cis-trans Isomers In Calbindin D9k Observed By X-ray Crystallography" 100.00 76 97.37 97.37 5.55e-33 GB AAA30420 "calcium-binding protein [Bos taurus]" 98.68 79 97.33 97.33 3.05e-32 GB AAA72542 "intestinal calcium binding protein (ICaBP), minor A form [synthetic construct]" 100.00 76 97.37 97.37 5.55e-33 GB AAI18481 "S100 calcium binding protein G [Bos taurus]" 98.68 79 97.33 97.33 3.05e-32 PRF 0707237A:PDB=3ICB "protein,Ca binding" 98.68 75 97.33 97.33 4.58e-32 REF NP_776682 "protein S100-G [Bos taurus]" 98.68 79 97.33 97.33 3.05e-32 REF XP_004021986 "PREDICTED: protein S100-G [Ovis aries]" 98.68 79 97.33 97.33 3.05e-32 REF XP_005701114 "PREDICTED: protein S100-G [Capra hircus]" 98.68 79 97.33 97.33 3.05e-32 REF XP_005888771 "PREDICTED: protein S100-G [Bos mutus]" 98.68 79 97.33 97.33 3.05e-32 REF XP_005982038 "PREDICTED: protein S100-G [Pantholops hodgsonii]" 98.68 79 97.33 97.33 3.05e-32 SP P02633 "RecName: Full=Protein S100-G; AltName: Full=Calbindin-D9k; AltName: Full=S100 calcium-binding protein G; AltName: Full=Vitamin " 98.68 79 97.33 97.33 3.05e-32 TPG DAA12577 "TPA: protein S100-G [Bos taurus]" 98.68 79 97.33 97.33 3.05e-32 stop_ save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species $F36G Bovine 9913 Eukaryota Metazoa Bos taurus stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_type _Vector_name $F36G 'recombinant technology' 'E. coli' Escherichia coli BL21DE3 plasmid pRCB1 stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_sample_1 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $F36G 2.5 mM . H2O 100 % . stop_ save_ save_sample_2 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $F36G 2.5 mM . D2O 100 % . stop_ save_ save_sample_3 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $F36G 2.5 mM [U-15N] stop_ save_ ############################ # Computer software used # ############################ save_FELIX _Saveframe_category software _Name FELIX _Version 97.0 loop_ _Task 'data processing' 'resonance assignments' stop_ _Details 'MSI, SAN DIEGO, CA' save_ save_DIANA _Saveframe_category software _Name DIANA _Version 2.8 loop_ _Task 'calculation of starting structures' stop_ _Details 'Used DIANA with REDAC strategy' _Citation_label $ref-1 save_ save_AMBER _Saveframe_category software _Name AMBER _Version 4.1 loop_ _Task 'structure refinement' stop_ _Details ; Fully explore conformational space and regularize structure in the vicinity of the starting structure. ; _Citation_label $ref-2 save_ save_GENXPK _Saveframe_category software _Name GENXPK _Version 1 loop_ _Task 'resonance and NOE assignments' stop_ _Details . _Citation_label $ref-3 save_ save_GLOMSA _Saveframe_category software _Name GLOMSA _Version . loop_ _Task 'determine dihedral angle constraints' stop_ _Details . _Citation_label $ref-1 save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_NMR_spectrometer_1 _Saveframe_category NMR_spectrometer _Manufacturer BRUKER _Model DMX _Field_strength 750 _Details . save_ save_NMR_spectrometer_2 _Saveframe_category NMR_spectrometer _Manufacturer BRUKER _Model AMX _Field_strength 500 _Details . save_ ############################# # NMR applied experiments # ############################# save_2D_COSY_1 _Saveframe_category NMR_applied_experiment _Experiment_name '2D COSY' _Sample_label . save_ save_2D_NOESY_2 _Saveframe_category NMR_applied_experiment _Experiment_name '2D NOESY' _Sample_label . save_ save_2D_TOCSY_3 _Saveframe_category NMR_applied_experiment _Experiment_name '2D TOCSY' _Sample_label . save_ save_2D_15N-1H_HSQC_4 _Saveframe_category NMR_applied_experiment _Experiment_name '2D 15N-1H HSQC' _Sample_label . save_ save_3D_15N-separated_NOESY_5 _Saveframe_category NMR_applied_experiment _Experiment_name '3D 15N-separated NOESY' _Sample_label . save_ save_3D_15N-separated_TOCSY_6 _Saveframe_category NMR_applied_experiment _Experiment_name '3D 15N-separated TOCSY' _Sample_label . save_ save_3D_HNHA_7 _Saveframe_category NMR_applied_experiment _Experiment_name '3D HNHA' _Sample_label . save_ save_3D_HNHB_8 _Saveframe_category NMR_applied_experiment _Experiment_name '3D HNHB' _Sample_label . save_ ####################### # Sample conditions # ####################### save_sample_cond_1 _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH 6.0 0.2 n/a pressure 1 . atm temperature 300 1 K stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis _Indirect_shift_ratio H2O H 1 protons ppm 4.75 internal direct . internal parallel 1.0 stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_chemical_shift_set_1 _Saveframe_category assigned_chemical_shifts _Details . loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $sample_cond_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name 'CALBINDIN D9K F36G' _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 1 MET HA H 4.182 0.02 1 2 . 1 MET HB2 H 2.132 0.02 1 3 . 1 MET HG2 H 2.665 0.02 1 4 . 2 LYS HA H 4.538 0.02 1 5 . 2 LYS HB2 H 1.832 0.02 2 6 . 2 LYS HB3 H 1.68 0.02 2 7 . 2 LYS HD2 H 1.70 0.02 1 8 . 2 LYS HD3 H 1.70 0.02 1 9 . 2 LYS HE2 H 2.969 0.02 1 10 . 2 LYS HG2 H 1.541 0.02 2 11 . 2 LYS HG3 H 1.485 0.02 2 12 . 3 SER HA H 4.724 0.02 1 13 . 3 SER HB2 H 4.423 0.02 2 14 . 3 SER HB3 H 4.065 0.02 2 15 . 3 SER H H 9.008 0.02 1 16 . 4 PRO HA H 4.314 0.02 1 17 . 4 PRO HB2 H 2.493 0.02 2 18 . 4 PRO HB3 H 2.014 0.02 2 19 . 4 PRO HD2 H 3.973 0.02 1 20 . 4 PRO HG2 H 2.259 0.02 2 21 . 4 PRO HG3 H 2.086 0.02 2 22 . 5 GLU HA H 4.016 0.02 1 23 . 5 GLU HB2 H 2.083 0.02 2 24 . 5 GLU HB3 H 1.979 0.02 2 25 . 5 GLU HG2 H 2.43 0.02 2 26 . 5 GLU HG3 H 2.277 0.02 2 27 . 5 GLU H H 8.725 0.02 1 28 . 6 GLU HA H 4.148 0.02 1 29 . 6 GLU HB2 H 2.39 0.02 2 30 . 6 GLU HB3 H 2.269 0.02 2 31 . 6 GLU HG2 H 2.467 0.02 2 32 . 6 GLU HG3 H 2.41 0.02 2 33 . 6 GLU H H 7.995 0.02 1 34 . 7 LEU HA H 4.237 0.02 1 35 . 7 LEU HB2 H 2.216 0.02 2 36 . 7 LEU HB3 H 1.767 0.02 2 37 . 7 LEU HG H 1.904 0.02 1 38 . 7 LEU H H 8.663 0.02 1 39 . 7 LEU HD1 H 0.889 0.02 2 40 . 7 LEU HD2 H 0.864 0.02 2 41 . 8 LYS HA H 3.692 0.02 1 42 . 8 LYS HB2 H 1.777 0.02 2 43 . 8 LYS HB3 H 1.479 0.02 2 44 . 8 LYS HD2 H 1.186 0.02 2 45 . 8 LYS HD3 H 1.077 0.02 2 46 . 8 LYS HE2 H 2.62 0.02 1 47 . 8 LYS HG2 H 0.72 0.02 1 48 . 8 LYS H H 8.488 0.02 1 49 . 9 GLY HA2 H 3.921 0.02 1 50 . 9 GLY H H 7.733 0.02 1 51 . 10 ILE HA H 3.924 0.02 1 52 . 10 ILE HB H 2.104 0.02 1 53 . 10 ILE HG12 H 1.923 0.02 2 54 . 10 ILE HG13 H 1.286 0.02 2 55 . 10 ILE H H 7.69 0.02 1 56 . 10 ILE HD1 H 0.972 0.02 1 57 . 10 ILE HG2 H 1.1 0.02 1 58 . 11 PHE HA H 3.566 0.02 1 59 . 11 PHE HB2 H 3.305 0.02 2 60 . 11 PHE HB3 H 2.903 0.02 2 61 . 11 PHE HD1 H 6.565 0.02 1 62 . 11 PHE HE1 H 7.045 0.02 1 63 . 11 PHE H H 8.463 0.02 1 64 . 11 PHE HZ H 7.36 0.02 1 65 . 12 GLU HA H 3.89 0.02 1 66 . 12 GLU HB2 H 2.142 0.02 2 67 . 12 GLU HB3 H 2.028 0.02 2 68 . 12 GLU HG2 H 2.63 0.02 2 69 . 12 GLU HG3 H 2.418 0.02 2 70 . 12 GLU H H 8.777 0.02 1 71 . 13 LYS HA H 3.906 0.02 1 72 . 13 LYS HB2 H 1.883 0.02 1 73 . 13 LYS HD2 H 1.585 0.02 2 74 . 13 LYS HD3 H 1.563 0.02 2 75 . 13 LYS HE2 H 2.814 0.02 1 76 . 13 LYS HG2 H 1.311 0.02 2 77 . 13 LYS HG3 H 0.905 0.02 2 78 . 13 LYS H H 7.533 0.02 1 79 . 14 TYR HA H 4.07 0.02 1 80 . 14 TYR HB2 H 2.799 0.02 2 81 . 14 TYR HB3 H 2.483 0.02 2 82 . 14 TYR HD1 H 7.488 0.02 1 83 . 14 TYR HE1 H 6.724 0.02 1 84 . 14 TYR H H 7.223 0.02 1 85 . 15 ALA HA H 3.955 0.02 1 86 . 15 ALA H H 8.428 0.02 1 87 . 15 ALA HB H 0.776 0.02 1 88 . 16 ALA HA H 4.06 0.02 1 89 . 16 ALA H H 7.498 0.02 1 90 . 16 ALA HB H 1.418 0.02 1 91 . 17 LYS HA H 3.897 0.02 1 92 . 17 LYS HB2 H 1.851 0.02 2 93 . 17 LYS HB3 H 1.809 0.02 2 94 . 17 LYS HD2 H 1.574 0.02 1 95 . 17 LYS HE2 H 2.812 0.02 1 96 . 17 LYS HG2 H 1.39 0.02 1 97 . 17 LYS H H 7.284 0.02 1 98 . 18 GLU HA H 4.449 0.02 1 99 . 18 GLU HB2 H 2.142 0.02 2 100 . 18 GLU HB3 H 1.96 0.02 2 101 . 18 GLU HG2 H 2.199 0.02 1 102 . 18 GLU H H 7.551 0.02 1 103 . 19 GLY HA2 H 3.954 0.02 2 104 . 19 GLY HA3 H 3.724 0.02 2 105 . 19 GLY H H 8.328 0.02 1 106 . 20 ASP HA H 4.80 0.02 1 107 . 20 ASP HB2 H 2.8 0.02 2 108 . 20 ASP HB3 H 2.581 0.02 2 109 . 20 ASP H H 8.456 0.02 1 110 . 21 PRO HA H 4.488 0.02 1 111 . 21 PRO HB2 H 2.194 0.02 2 112 . 21 PRO HB3 H 2.011 0.02 2 113 . 21 PRO HD2 H 3.867 0.02 1 114 . 21 PRO HG2 H 1.856 0.02 1 115 . 22 ASN HA H 5.004 0.02 1 116 . 22 ASN HB2 H 2.99 0.02 2 117 . 22 ASN HB3 H 2.805 0.02 2 118 . 22 ASN HD21 H 7.992 0.02 2 119 . 22 ASN HD22 H 7.074 0.02 2 120 . 22 ASN H H 8.744 0.02 1 121 . 23 GLN HA H 5.134 0.02 1 122 . 23 GLN HB2 H 2.032 0.02 2 123 . 23 GLN HB3 H 1.769 0.02 2 124 . 23 GLN HE21 H 7.354 0.02 2 125 . 23 GLN HE22 H 6.697 0.02 2 126 . 23 GLN HG2 H 2.258 0.02 2 127 . 23 GLN HG3 H 2.11 0.02 2 128 . 23 GLN H H 7.743 0.02 1 129 . 24 LEU HA H 4.776 0.02 1 130 . 24 LEU HB2 H 1.593 0.02 2 131 . 24 LEU HB3 H 1.235 0.02 2 132 . 24 LEU HG H 1.199 0.02 1 133 . 24 LEU H H 8.804 0.02 1 134 . 24 LEU HD1 H 0.517 0.02 2 135 . 24 LEU HD2 H 0.408 0.02 2 136 . 25 SER HA H 4.677 0.02 1 137 . 25 SER HB2 H 4.394 0.02 2 138 . 25 SER HB3 H 4.077 0.02 2 139 . 25 SER H H 8.612 0.02 1 140 . 26 LYS HA H 3.872 0.02 1 141 . 26 LYS HB2 H 1.931 0.02 2 142 . 26 LYS HB3 H 1.781 0.02 2 143 . 26 LYS HD2 H 2.112 0.02 2 144 . 26 LYS HD3 H 2.049 0.02 2 145 . 26 LYS HE2 H 2.903 0.02 2 146 . 26 LYS HE3 H 2.706 0.02 2 147 . 26 LYS HG2 H 1.717 0.02 2 148 . 26 LYS HG3 H 1.53 0.02 2 149 . 26 LYS H H 8.826 0.02 1 150 . 27 GLU HA H 3.901 0.02 1 151 . 27 GLU HB2 H 1.983 0.02 1 152 . 27 GLU HG2 H 2.317 0.02 2 153 . 27 GLU HG3 H 2.216 0.02 2 154 . 27 GLU H H 8.49 0.02 1 155 . 28 GLU HA H 4.063 0.02 1 156 . 28 GLU HB2 H 2.208 0.02 2 157 . 28 GLU HB3 H 2.05 0.02 2 158 . 28 GLU HG2 H 2.438 0.02 2 159 . 28 GLU HG3 H 2.436 0.02 2 160 . 28 GLU H H 7.762 0.02 1 161 . 29 LEU HA H 3.949 0.02 1 162 . 29 LEU HB2 H 2.149 0.02 2 163 . 29 LEU HB3 H 1.443 0.02 2 164 . 29 LEU HG H 1.57 0.02 1 165 . 29 LEU H H 8.623 0.02 1 166 . 29 LEU HD1 H 1.047 0.02 2 167 . 29 LEU HD2 H 0.987 0.02 2 168 . 30 LYS HA H 3.699 0.02 1 169 . 30 LYS HB2 H 1.692 0.02 2 170 . 30 LYS HB3 H 1.545 0.02 2 171 . 30 LYS HD2 H 1.314 0.02 2 172 . 30 LYS HD3 H 1.29 0.02 2 173 . 30 LYS HE2 H 2.38 0.02 1 174 . 30 LYS HG2 H 0.521 0.02 2 175 . 30 LYS HG3 H 0.523 0.02 2 176 . 30 LYS H H 8.076 0.02 1 177 . 31 LEU HA H 4.153 0.02 1 178 . 31 LEU HB2 H 1.864 0.02 2 179 . 31 LEU HB3 H 1.79 0.02 2 180 . 31 LEU HG H 1.705 0.02 1 181 . 31 LEU H H 7.41 0.02 1 182 . 31 LEU HD1 H 1.025 0.02 2 183 . 31 LEU HD2 H 0.977 0.02 2 184 . 32 LEU HA H 3.005 0.02 1 185 . 32 LEU HB2 H 1.661 0.02 2 186 . 32 LEU HB3 H 0.925 0.02 2 187 . 32 LEU HG H 1.018 0.02 1 188 . 32 LEU H H 8.362 0.02 1 189 . 32 LEU HD1 H 0.653 0.02 2 190 . 32 LEU HD2 H 0.452 0.02 2 191 . 33 LEU HA H 3.744 0.02 1 192 . 33 LEU HB2 H 2.116 0.02 2 193 . 33 LEU HB3 H 1.392 0.02 2 194 . 33 LEU HG H 1.955 0.02 1 195 . 33 LEU H H 8.601 0.02 1 196 . 33 LEU HD1 H 0.855 0.02 2 197 . 33 LEU HD2 H 0.733 0.02 2 198 . 34 GLN HA H 4.083 0.02 1 199 . 34 GLN HB2 H 2.322 0.02 2 200 . 34 GLN HB3 H 2.154 0.02 2 201 . 34 GLN HE21 H 7.265 0.02 2 202 . 34 GLN HE22 H 6.782 0.02 2 203 . 34 GLN HG2 H 2.592 0.02 2 204 . 34 GLN HG3 H 2.423 0.02 2 205 . 34 GLN H H 8.477 0.02 1 206 . 35 THR HA H 4.094 0.02 1 207 . 35 THR HB H 4.365 0.02 1 208 . 35 THR H H 8.082 0.02 1 209 . 35 THR HG2 H 1.31 0.02 1 210 . 36 GLU HA H 4.531 0.02 1 211 . 36 GLU HB2 H 2.299 0.02 2 212 . 36 GLU HB3 H 1.7 0.02 2 213 . 36 GLU HG2 H 2.555 0.02 2 214 . 36 GLU HG3 H 2.365 0.02 2 215 . 36 GLU H H 8.977 0.02 1 216 . 37 GLY HA2 H 4.418 0.02 2 217 . 37 GLY HA3 H 3.726 0.02 2 218 . 37 GLY H H 7.66 0.02 1 219 . 38 PRO HA H 4.366 0.02 1 220 . 38 PRO HB2 H 2.406 0.02 2 221 . 38 PRO HB3 H 2.119 0.02 2 222 . 38 PRO HD2 H 3.627 0.02 2 223 . 38 PRO HD3 H 3.529 0.02 2 224 . 38 PRO HG2 H 1.965 0.02 2 225 . 38 PRO HG3 H 1.945 0.02 2 226 . 39 SER HA H 4.508 0.02 1 227 . 39 SER HB2 H 4.006 0.02 2 228 . 39 SER HB3 H 3.926 0.02 2 229 . 39 SER H H 7.859 0.02 1 230 . 40 LEU HA H 4.361 0.02 1 231 . 40 LEU HB2 H 1.674 0.02 2 232 . 40 LEU HB3 H 1.463 0.02 2 233 . 40 LEU HG H 1.7 0.02 1 234 . 40 LEU H H 8.037 0.02 1 235 . 40 LEU HD1 H 0.817 0.02 2 236 . 40 LEU HD2 H 0.787 0.02 2 237 . 41 LEU HA H 4.452 0.02 1 238 . 41 LEU HB2 H 1.694 0.02 2 239 . 41 LEU HB3 H 1.54 0.02 2 240 . 41 LEU HG H 1.616 0.02 1 241 . 41 LEU H H 8.071 0.02 1 242 . 41 LEU HD1 H 0.835 0.02 2 243 . 41 LEU HD2 H 0.758 0.02 2 244 . 42 LYS HA H 4.272 0.02 1 245 . 42 LYS HB2 H 1.819 0.02 2 246 . 42 LYS HB3 H 1.773 0.02 2 247 . 42 LYS HD2 H 1.671 0.02 1 248 . 42 LYS HE2 H 2.988 0.02 1 249 . 42 LYS HG2 H 1.456 0.02 1 250 . 42 LYS HG3 H 1.412 0.02 1 251 . 42 LYS H H 8.183 0.02 1 252 . 43 GLY HA2 H 4.011 0.02 2 253 . 43 GLY HA3 H 3.924 0.02 2 254 . 43 GLY H H 8.248 0.02 1 255 . 44 MET HA H 4.503 0.02 1 256 . 44 MET HB2 H 2.151 0.02 2 257 . 44 MET HB3 H 2.01 0.02 2 258 . 44 MET HG2 H 2.607 0.02 2 259 . 44 MET HG3 H 2.507 0.02 2 260 . 44 MET H H 8.301 0.02 1 261 . 45 SER HA H 4.499 0.02 1 262 . 45 SER HB2 H 3.939 0.02 2 263 . 45 SER HB3 H 3.897 0.02 2 264 . 45 SER H H 8.374 0.02 1 265 . 46 THR HA H 4.479 0.02 1 266 . 46 THR HB H 4.407 0.02 1 267 . 46 THR H H 7.962 0.02 1 268 . 46 THR HG2 H 1.241 0.02 1 269 . 47 LEU HA H 3.948 0.02 1 270 . 47 LEU HB2 H 1.447 0.02 2 271 . 47 LEU HB3 H 1.18 0.02 2 272 . 47 LEU HG H 1.412 0.02 1 273 . 47 LEU H H 8.261 0.02 1 274 . 47 LEU HD1 H 0.801 0.02 2 275 . 47 LEU HD2 H 0.721 0.02 2 276 . 48 ASP HA H 4.201 0.02 1 277 . 48 ASP HB2 H 2.648 0.02 2 278 . 48 ASP HB3 H 2.566 0.02 2 279 . 48 ASP H H 8.025 0.02 1 280 . 49 GLU HA H 4.082 0.02 1 281 . 49 GLU HB2 H 2.1 0.02 2 282 . 49 GLU HB3 H 2.044 0.02 2 283 . 49 GLU HG2 H 2.307 0.02 2 284 . 49 GLU HG3 H 2.171 0.02 2 285 . 49 GLU H H 8.034 0.02 1 286 . 50 LEU HA H 4.163 0.02 1 287 . 50 LEU HB2 H 1.669 0.02 2 288 . 50 LEU HB3 H 1.529 0.02 2 289 . 50 LEU HG H 1.608 0.02 1 290 . 50 LEU H H 7.757 0.02 1 291 . 50 LEU HD1 H 0.882 0.02 2 292 . 50 LEU HD2 H 0.838 0.02 2 293 . 51 PHE HA H 4.299 0.02 1 294 . 51 PHE HB2 H 3.274 0.02 1 295 . 51 PHE HD1 H 7.275 0.02 1 296 . 51 PHE HE1 H 7.224 0.02 1 297 . 51 PHE H H 8.614 0.02 1 298 . 51 PHE HZ H 7.019 0.02 1 299 . 52 GLU HA H 4.138 0.02 1 300 . 52 GLU HB2 H 2.202 0.02 2 301 . 52 GLU HB3 H 2.141 0.02 2 302 . 52 GLU HG2 H 2.463 0.02 2 303 . 52 GLU HG3 H 2.303 0.02 2 304 . 52 GLU H H 7.874 0.02 1 305 . 53 GLU HA H 4.134 0.02 1 306 . 53 GLU HB2 H 2.11 0.02 1 307 . 53 GLU HG2 H 2.339 0.02 2 308 . 53 GLU HG3 H 2.189 0.02 2 309 . 53 GLU H H 7.693 0.02 1 310 . 54 LEU HA H 4.091 0.02 1 311 . 54 LEU HB2 H 1.872 0.02 2 312 . 54 LEU HB3 H 1.44 0.02 2 313 . 54 LEU HG H 1.929 0.02 1 314 . 54 LEU H H 8.33 0.02 1 315 . 54 LEU HD1 H 0.841 0.02 2 316 . 54 LEU HD2 H 0.773 0.02 2 317 . 55 ASP HA H 4.414 0.02 1 318 . 55 ASP HB2 H 2.736 0.02 2 319 . 55 ASP HB3 H 2.741 0.02 2 320 . 55 ASP H H 8.121 0.02 1 321 . 56 LYS HA H 4.199 0.02 1 322 . 56 LYS HB2 H 1.891 0.02 2 323 . 56 LYS HB3 H 1.611 0.02 2 324 . 56 LYS HD2 H 1.613 0.02 1 325 . 56 LYS HE2 H 2.956 0.02 2 326 . 56 LYS HE3 H 2.89 0.02 2 327 . 56 LYS HG2 H 1.484 0.02 2 328 . 56 LYS HG3 H 1.46 0.02 2 329 . 56 LYS H H 7.711 0.02 1 330 . 57 ASN HA H 4.761 0.02 1 331 . 57 ASN HB2 H 2.92 0.02 2 332 . 57 ASN HB3 H 2.836 0.02 2 333 . 57 ASN HD21 H 7.731 0.02 2 334 . 57 ASN HD22 H 6.963 0.02 2 335 . 57 ASN H H 7.791 0.02 1 336 . 58 GLY HA2 H 4.092 0.02 1 337 . 58 GLY HA3 H 3.943 0.02 1 338 . 58 GLY H H 8.048 0.02 1 339 . 59 ASP HA H 4.734 0.02 1 340 . 59 ASP HB2 H 2.793 0.02 2 341 . 59 ASP HB3 H 2.658 0.02 2 342 . 59 ASP H H 8.382 0.02 1 343 . 60 GLY HA2 H 3.995 0.02 1 344 . 60 GLY H H 8.457 0.02 1 345 . 61 GLU HA H 4.794 0.02 1 346 . 61 GLU HB2 H 1.955 0.02 2 347 . 61 GLU HB3 H 1.839 0.02 2 348 . 61 GLU HG2 H 2.315 0.02 2 349 . 61 GLU HG3 H 2.175 0.02 2 350 . 61 GLU H H 8.15 0.02 1 351 . 62 VAL HA H 4.649 0.02 1 352 . 62 VAL HB H 2.243 0.02 1 353 . 62 VAL H H 9.134 0.02 1 354 . 62 VAL HG1 H 1.105 0.02 2 355 . 62 VAL HG2 H 0.985 0.02 2 356 . 63 SER HA H 5.071 0.02 1 357 . 63 SER HB2 H 4.513 0.02 2 358 . 63 SER HB3 H 4.187 0.02 2 359 . 63 SER H H 8.716 0.02 1 360 . 64 PHE HA H 3.407 0.02 1 361 . 64 PHE HB2 H 2.594 0.02 2 362 . 64 PHE HB3 H 2.36 0.02 2 363 . 64 PHE HD1 H 6.721 0.02 1 364 . 64 PHE HE1 H 7.114 0.02 1 365 . 64 PHE H H 9.211 0.02 1 366 . 64 PHE HZ H 7.306 0.02 1 367 . 65 GLU HA H 3.707 0.02 1 368 . 65 GLU HB2 H 2.01 0.02 2 369 . 65 GLU HB3 H 1.902 0.02 2 370 . 65 GLU HG2 H 2.376 0.02 2 371 . 65 GLU HG3 H 2.249 0.02 2 372 . 65 GLU H H 8.686 0.02 1 373 . 66 GLU HA H 3.954 0.02 1 374 . 66 GLU HB2 H 2.348 0.02 2 375 . 66 GLU HB3 H 2.04 0.02 2 376 . 66 GLU HG2 H 2.098 0.02 2 377 . 66 GLU HG3 H 2.13 0.02 2 378 . 66 GLU H H 7.595 0.02 1 379 . 67 PHE HA H 4.166 0.02 1 380 . 67 PHE HB2 H 3.312 0.02 2 381 . 67 PHE HB3 H 3.205 0.02 2 382 . 67 PHE HD1 H 7.085 0.02 1 383 . 67 PHE HE1 H 7.226 0.02 1 384 . 67 PHE H H 8.783 0.02 1 385 . 67 PHE HZ H 7.245 0.02 2 386 . 68 GLN HA H 3.303 0.02 1 387 . 68 GLN HB2 H 1.733 0.02 2 388 . 68 GLN HB3 H 1.722 0.02 2 389 . 68 GLN HE21 H 6.719 0.02 2 390 . 68 GLN HE22 H 6.21 0.02 2 391 . 68 GLN HG2 H 1.647 0.02 1 392 . 68 GLN H H 8.162 0.02 1 393 . 69 VAL HA H 3.442 0.02 1 394 . 69 VAL HB H 2.11 0.02 1 395 . 69 VAL H H 7.252 0.02 1 396 . 69 VAL HG1 H 1.012 0.02 2 397 . 69 VAL HG2 H 0.894 0.02 2 398 . 70 LEU HA H 3.982 0.02 1 399 . 70 LEU HB2 H 1.731 0.02 2 400 . 70 LEU HB3 H 1.695 0.02 2 401 . 70 LEU HG H 1.656 0.02 1 402 . 70 LEU H H 7.728 0.02 1 403 . 70 LEU HD1 H 0.917 0.02 2 404 . 70 LEU HD2 H 0.893 0.02 2 405 . 71 VAL HA H 3.32 0.02 1 406 . 71 VAL HB H 1.637 0.02 1 407 . 71 VAL H H 8.034 0.02 1 408 . 71 VAL HG1 H 0.654 0.02 2 409 . 71 VAL HG2 H 0.242 0.02 2 410 . 72 LYS HA H 3.948 0.02 1 411 . 72 LYS HB2 H 1.835 0.02 2 412 . 72 LYS HB3 H 1.795 0.02 2 413 . 72 LYS HD2 H 1.66 0.02 1 414 . 72 LYS HE2 H 2.895 0.02 1 415 . 72 LYS HG2 H 1.466 0.02 1 416 . 72 LYS HG3 H 1.328 0.02 1 417 . 72 LYS H H 7.715 0.02 1 418 . 73 LYS HA H 4.082 0.02 1 419 . 73 LYS HB2 H 1.959 0.02 1 420 . 73 LYS HD2 H 1.613 0.02 1 421 . 73 LYS HE2 H 2.898 0.02 1 422 . 73 LYS HG2 H 1.542 0.02 2 423 . 73 LYS HG3 H 1.39 0.02 2 424 . 73 LYS H H 7.71 0.02 1 425 . 74 ILE HA H 4.366 0.02 1 426 . 74 ILE HB H 1.907 0.02 1 427 . 74 ILE HG12 H 1.411 0.02 2 428 . 74 ILE HG13 H 1.396 0.02 2 429 . 74 ILE H H 7.592 0.02 1 430 . 74 ILE HD1 H 0.706 0.02 1 431 . 74 ILE HG2 H 0.904 0.02 1 432 . 75 SER HA H 4.578 0.02 1 433 . 75 SER HB2 H 3.951 0.02 2 434 . 75 SER HB3 H 3.887 0.02 2 435 . 75 SER H H 7.683 0.02 1 436 . 76 GLN HA H 4.053 0.02 1 437 . 76 GLN HB2 H 2.183 0.02 2 438 . 76 GLN HB3 H 1.891 0.02 2 439 . 76 GLN HE21 H 7.50 0.02 2 440 . 76 GLN HE22 H 6.79 0.02 2 441 . 76 GLN HG2 H 2.34 0.02 1 442 . 76 GLN H H 7.692 0.02 1 stop_ save_