data_4979 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; 1H and 13C chemical shift assignments for the pheromone Er-23 from Euplotes raikovi ; _BMRB_accession_number 4979 _BMRB_flat_file_name bmr4979.str _Entry_type original _Submission_date 2001-03-25 _Accession_date 2001-03-25 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Zahn Ralph . . 2 Damberger Fred F. . 3 Ortenzi Claudio . . 4 Luporini Pierangelo . . 5 Wuthrich Kurt . . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 1 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 243 "13C chemical shifts" 51 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2001-11-09 original author . stop_ loop_ _Related_BMRB_accession_number _Relationship 4820 'Pheromone Er-22 Luginbuhl' stop_ _Original_release_date 2001-11-09 save_ ############################# # Citation for this entry # ############################# save_entry_citation _Saveframe_category entry_citation _Citation_full . _Citation_title ; Communication: NMR structure of the Euplotes raikovi pheromone Er-23 and identification of its five disulfide bonds ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 11700049 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Zahn Ralph . . 2 Damberger Fred F. . 3 Ortenzi Claudio . . 4 Luporini Pierangelo . . 5 Wuthrich Kurt . . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_volume 313 _Journal_issue 5 _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first 923 _Page_last 931 _Year 2001 _Details . loop_ _Keyword cell-signaling 'ciliate pheromone' 'disulfide bond identification' disulfide-rich Er-23 'Euplotes raikovi' 'GA group' stop_ save_ ####################################### # Cited references within the entry # ####################################### save_reference_1 _Saveframe_category citation _Citation_full ; Liu A, Luginbuhl P, Zerbe O, Ortenzi C, Luporini P, Wuthrich K. NMR structure of the pheromone Er-22 from Euplotes raikovi. J Biomol NMR. 2001 Jan;19(1):75-8. ; _Citation_title 'NMR structure of the pheromone Er-22 from Euplotes raikovi.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 11246857 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Liu A. . . 2 Luginbuhl P. . . 3 Zerbe O. . . 4 Ortenzi C. . . 5 Luporini P. . . 6 Wuthrich K. . . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 19 _Journal_issue 1 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 75 _Page_last 78 _Year 2001 _Details . save_ save_reference_2 _Saveframe_category citation _Citation_full ; Bartels C., Xia T., Billeter M., Guntert P., Wuthrich K. J. Biomol. NMR, Vol.5, p1-10 (1995). ; _Citation_title . _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_reference_3 _Saveframe_category citation _Citation_full ; Guntert P, Mumenthaler C, Wuthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA J Mol Biol. 1997 Oct 17;273(1):283-98. ; _Citation_title 'Torsion angle dynamics for NMR structure calculation with the new program DYANA.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9367762 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Guntert P. . . 2 Mumenthaler C. . . 3 Wuthrich K. . . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of molecular biology' _Journal_volume 273 _Journal_issue 1 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 283 _Page_last 298 _Year 1997 _Details ; The new program DYANA (DYnamics Algorithm for Nmr Applications) for efficient calculation of three-dimensional protein and nucleic acid structures from distance constraints and torsion angle constraints collected by nuclear magnetic resonance (NMR) experiments performs simulated annealing by molecular dynamics in torsion angle space and uses a fast recursive algorithm to integrate the equations of motions. Torsion angle dynamics can be more efficient than molecular dynamics in Cartesian coordinate space because of the reduced number of degrees of freedom and the concomitant absence of high-frequency bond and angle vibrations, which allows for the use of longer time-steps and/or higher temperatures in the structure calculation. It also represents a significant advance over the variable target function method in torsion angle space with the REDAC strategy used by the predecessor program DIANA. DYANA computation times per accepted conformer in the "bundle" used to represent the NMR structure compare favorably with those of other presently available structure calculation algorithms, and are of the order of 160 seconds for a protein of 165 amino acid residues when using a DEC Alpha 8400 5/300 computer. Test calculations starting from conformers with random torsion angle values further showed that DYANA is capable of efficient calculation of high-quality protein structures with up to 400 amino acid residues, and of nucleic acid structures. ; save_ save_reference_4 _Saveframe_category citation _Citation_full ; Luginbuhl P, Guntert P, Billeter M, Wuthrich K. The new program OPAL for molecular dynamics simulations and energy refinements of biological macromolecules. J Biomol NMR. 1996 Sep;8(2):136-46. ; _Citation_title 'The new program OPAL for molecular dynamics simulations and energy refinements of biological macromolecules.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 8914272 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Luginbuhl P. . . 2 Guntert P. . . 3 Billeter M. . . 4 Wuthrich K. . . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 8 _Journal_issue 2 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 136 _Page_last 146 _Year 1996 _Details ; A new program for molecular dynamics (MD) simulation and energy refinement of biological macromolecules, OPAL, is introduced. Combined with the supporting program TRAJEC for the analysis of MD trajectories, OPAL affords high efficiency and flexibility for work with different force fields, and offers a user-friendly interface and extensive trajectory analysis capabilities. Salient features are computational speeds of up to 1.5 GFlops on vector supercomputers such as the NEC SX-3, ellipsoidal boundaries to reduce the system size for studies in explicit solvents, and natural treatment of the hydrostatic pressure. Practical applications of OPAL are illustrated with MD simulations of pure water, energy minimization of the NMR structure of the mixed disulfide of a mutant E. coli glutaredoxin with glutathione in different solvent models, and MD simulations of a small protein, pheromone Er-2, using either instantaneous or time-averaged NMR restraints, or no restraints. ; save_ ################################## # Molecular system description # ################################## save_system_Er-23 _Saveframe_category molecular_system _Mol_system_name 'Er-23 pheromone' _Abbreviation_common Er-23 _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label Er-23 $Er-23 stop_ _System_molecular_weight . _System_physical_state native _System_oligomer_state monomer _System_paramagnetic no _System_thiol_state 'all disulfide bound' loop_ _Biological_function pheromone stop_ _Database_query_date . _Details . save_ ######################## # Monomeric polymers # ######################## save_Er-23 _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common 'Er-23 pheromone' _Abbreviation_common Er-23 _Molecular_mass 5095 _Mol_thiol_state 'all disulfide bound' _Details . ############################## # Polymer residue sequence # ############################## _Residue_count 51 _Mol_residue_sequence ; GECEQCFSDGGDCTTCFNNG TGPCANCLAGYPAGCSNSDC TAFLSQCYGGC ; loop_ _Residue_seq_code _Residue_label 1 GLY 2 GLU 3 CYS 4 GLU 5 GLN 6 CYS 7 PHE 8 SER 9 ASP 10 GLY 11 GLY 12 ASP 13 CYS 14 THR 15 THR 16 CYS 17 PHE 18 ASN 19 ASN 20 GLY 21 THR 22 GLY 23 PRO 24 CYS 25 ALA 26 ASN 27 CYS 28 LEU 29 ALA 30 GLY 31 TYR 32 PRO 33 ALA 34 GLY 35 CYS 36 SER 37 ASN 38 SER 39 ASP 40 CYS 41 THR 42 ALA 43 PHE 44 LEU 45 SER 46 GLN 47 CYS 48 TYR 49 GLY 50 GLY 51 CYS stop_ _Sequence_homology_query_date . _Sequence_homology_query_revised_last_date 2014-11-16 loop_ _Database_name _Database_accession_code _Database_entry_mol_name _Sequence_query_to_submitted_percentage _Sequence_subject_length _Sequence_identity _Sequence_positive _Sequence_homology_expectation_value PDB 1HA8 "Pheromone Er-23 From Euplotes Raikovi" 100.00 51 100.00 100.00 1.63e-25 SP P58547 "RecName: Full=Mating pheromone Er-23; AltName: Full=Euplomone R23 [Euplotes raikovi]" 100.00 51 100.00 100.00 1.63e-25 stop_ save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species _Strain $Er-23 'Euplotes raikovi' 5938 Eukaryota . Euplotes raikovi H-3/GA-4 stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_name _Details $Er-23 'purified from the natural source' . Euplotes raikovi H-3/GA-4 . ; H-3/GA-4 strain is homozygous for the Er-23 pheromone gene at the mat (mating-type) locus ; stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_sample_1 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $Er-23 1.0 mM . H2O 90 % . D2O 10 % . stop_ save_ save_sample_2 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $Er-23 1.0 mM . D2O 100 % . stop_ save_ ############################ # Computer software used # ############################ save_XEASY _Saveframe_category software _Name XEASY _Version . loop_ _Task 'assisted resonance assignment' stop_ _Details ; Bartels C.,Xia T., Billeter M., Guntert P., Wuthrich K. J. Biomol. NMR, Vol.5, p.1-10. (1995) ; save_ save_DYANA _Saveframe_category software _Name DYANA _Version . loop_ _Task 'automatic NOESY chemical shift assignment' 'automatic structure calculation' stop_ _Details ; Guntert P., Mumenthaler C., Wuthrich K. J.Mol.Biol., Vol.273, p.283-298 (1997) ; save_ save_OPAL _Saveframe_category software _Name OPAL _Version . loop_ _Task 'Structure Refinement in simulated H2O bath' stop_ _Details ; Luginbuhl, P., Guntert P., Billeter M., Wuthrich K. J. Biomol. NMR Vol.8, p.136-146. (1996) ; save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_NMR_spectrometer_1 _Saveframe_category NMR_spectrometer _Manufacturer Varian _Model Unity-plus _Field_strength 750 _Details . save_ save_NMR_spectrometer_2 _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model AMX _Field_strength 600 _Details . save_ ############################# # NMR applied experiments # ############################# save_E.COSY,_2Q-COSY_&_1H-13C_HSQC_recorded_in_D2O_1 _Saveframe_category NMR_applied_experiment _Experiment_name 'E.COSY, 2Q-COSY & 1H-13C HSQC recorded in D2O' _Sample_label . save_ save_NOESY_in_H2O_2 _Saveframe_category NMR_applied_experiment _Experiment_name 'NOESY in H2O' _Sample_label . save_ save_ZQ-suppressed_NOESY_in_D2O_3 _Saveframe_category NMR_applied_experiment _Experiment_name 'ZQ-suppressed NOESY in D2O' _Sample_label . save_ save_other_experiments_recorded_in_H2O_&_D2O_4 _Saveframe_category NMR_applied_experiment _Experiment_name 'other experiments recorded in H2O & D2O' _Sample_label . save_ ####################### # Sample conditions # ####################### save_cond_1 _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH 4.6 0.1 n/a temperature 290 1 K stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis _Indirect_shift_ratio DSS C 13 'methyl protons' ppm 0.0 . indirect . . . . DSS H 1 'methyl protons' ppm 0.0 internal direct . . . 1.0 stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_Er-23_1H_shifts _Saveframe_category assigned_chemical_shifts _Details . loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $cond_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name Er-23 _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 1 GLY HA2 H 3.77 0.02 2 2 . 1 GLY HA3 H 3.63 0.02 2 3 . 1 GLY CA C 43.6 0.1 1 4 . 2 GLU H H 9.00 0.02 1 5 . 2 GLU HA H 4.08 0.02 1 6 . 2 GLU HB2 H 2.05 0.02 1 7 . 2 GLU HB3 H 2.05 0.02 1 8 . 2 GLU HG2 H 2.43 0.02 2 9 . 2 GLU HG3 H 2.38 0.02 2 10 . 2 GLU CA C 58.9 0.1 1 11 . 3 CYS H H 10.65 0.02 1 12 . 3 CYS HA H 4.36 0.02 1 13 . 3 CYS HB2 H 2.88 0.02 2 14 . 3 CYS HB3 H 3.52 0.02 2 15 . 3 CYS CA C 58.6 0.1 1 16 . 4 GLU H H 9.26 0.02 1 17 . 4 GLU HA H 4.19 0.02 1 18 . 4 GLU HB2 H 2.15 0.02 2 19 . 4 GLU HB3 H 2.09 0.02 2 20 . 4 GLU HG2 H 2.85 0.02 2 21 . 4 GLU HG3 H 2.25 0.02 2 22 . 4 GLU CA C 59.7 0.1 1 23 . 5 GLN H H 8.70 0.02 1 24 . 5 GLN HA H 3.88 0.02 1 25 . 5 GLN HB2 H 2.16 0.02 2 26 . 5 GLN HB3 H 1.94 0.02 2 27 . 5 GLN HG2 H 2.38 0.02 1 28 . 5 GLN HG3 H 2.38 0.02 1 29 . 5 GLN HE21 H 7.82 0.02 1 30 . 5 GLN HE22 H 6.84 0.02 1 31 . 5 GLN CA C 58.0 0.1 1 32 . 6 CYS H H 7.61 0.02 1 33 . 6 CYS HA H 4.19 0.02 1 34 . 6 CYS HB2 H 3.34 0.02 1 35 . 6 CYS HB3 H 3.54 0.02 1 36 . 6 CYS CA C 60.3 0.1 1 37 . 7 PHE H H 7.68 0.02 1 38 . 7 PHE HA H 4.01 0.02 1 39 . 7 PHE HB2 H 3.14 0.02 1 40 . 7 PHE HB3 H 3.09 0.02 1 41 . 7 PHE HD1 H 7.43 0.02 1 42 . 7 PHE HD2 H 7.43 0.02 1 43 . 7 PHE HE1 H 7.38 0.02 1 44 . 7 PHE HE2 H 7.38 0.02 1 45 . 7 PHE HZ H 7.21 0.02 1 46 . 7 PHE CA C 61.8 0.1 1 47 . 8 SER H H 8.81 0.02 1 48 . 8 SER HA H 4.24 0.02 1 49 . 8 SER HB2 H 3.95 0.02 1 50 . 8 SER HB3 H 3.95 0.02 1 51 . 8 SER CA C 65.3 0.1 1 52 . 9 ASP H H 8.06 0.02 1 53 . 9 ASP HA H 4.70 0.02 1 54 . 9 ASP HB2 H 2.92 0.02 2 55 . 9 ASP HB3 H 2.66 0.02 2 56 . 9 ASP CA C 52.1 0.1 1 57 . 10 GLY H H 7.79 0.02 1 58 . 10 GLY HA2 H 3.77 0.02 1 59 . 10 GLY HA3 H 4.38 0.02 1 60 . 10 GLY CA C 45.0 0.1 1 61 . 11 GLY H H 7.99 0.02 1 62 . 11 GLY HA2 H 3.91 0.02 1 63 . 11 GLY HA3 H 3.35 0.02 1 64 . 11 GLY CA C 44.5 0.1 1 65 . 12 ASP H H 7.53 0.02 1 66 . 12 ASP HA H 4.69 0.02 1 67 . 12 ASP HB2 H 2.69 0.02 2 68 . 12 ASP HB3 H 3.18 0.02 2 69 . 12 ASP CA C 55.7 0.1 1 70 . 13 CYS H H 8.54 0.02 1 71 . 13 CYS HA H 4.49 0.02 1 72 . 13 CYS HB2 H 2.96 0.02 2 73 . 13 CYS HB3 H 3.04 0.02 2 74 . 13 CYS CA C 59.2 0.1 1 75 . 14 THR H H 8.36 0.02 1 76 . 14 THR HA H 4.24 0.02 1 77 . 14 THR HB H 4.42 0.02 1 78 . 14 THR HG2 H 1.27 0.02 1 79 . 14 THR CA C 66.3 0.1 1 80 . 15 THR H H 9.39 0.02 1 81 . 15 THR HA H 4.20 0.02 1 82 . 15 THR HB H 4.14 0.02 1 83 . 15 THR HG2 H 1.27 0.02 1 84 . 15 THR CA C 60.3 0.1 1 85 . 16 CYS H H 8.57 0.02 1 86 . 16 CYS HA H 4.65 0.02 1 87 . 16 CYS HB2 H 2.55 0.02 1 88 . 16 CYS HB3 H 2.95 0.02 1 89 . 16 CYS CA C 55.4 0.1 1 90 . 17 PHE H H 7.64 0.02 1 91 . 17 PHE HA H 4.35 0.02 1 92 . 17 PHE HB2 H 3.45 0.02 1 93 . 17 PHE HB3 H 3.45 0.02 1 94 . 17 PHE HD1 H 7.29 0.02 1 95 . 17 PHE HD2 H 7.29 0.02 1 96 . 17 PHE HE1 H 7.47 0.02 1 97 . 17 PHE HE2 H 7.47 0.02 1 98 . 17 PHE HZ H 7.37 0.02 1 99 . 17 PHE CA C 58.1 0.1 1 100 . 18 ASN H H 8.69 0.02 1 101 . 18 ASN HA H 4.39 0.02 1 102 . 18 ASN HB2 H 2.56 0.02 1 103 . 18 ASN HB3 H 2.81 0.02 1 104 . 18 ASN HD21 H 7.31 0.02 1 105 . 18 ASN HD22 H 6.70 0.02 1 106 . 18 ASN CA C 53.1 0.1 1 107 . 19 ASN H H 9.36 0.02 1 108 . 19 ASN HA H 4.23 0.02 1 109 . 19 ASN HB2 H 2.63 0.02 2 110 . 19 ASN HB3 H 2.99 0.02 2 111 . 19 ASN HD21 H 7.54 0.02 1 112 . 19 ASN HD22 H 6.86 0.02 1 113 . 19 ASN CA C 54.4 0.1 1 114 . 20 GLY H H 5.65 0.02 1 115 . 20 GLY HA2 H 4.27 0.02 1 116 . 20 GLY HA3 H 2.79 0.02 1 117 . 20 GLY CA C 45.0 0.1 1 118 . 21 THR H H 7.45 0.02 1 119 . 21 THR HA H 4.55 0.02 1 120 . 21 THR HB H 4.36 0.02 1 121 . 21 THR HG2 H 1.01 0.02 1 122 . 21 THR CA C 60.8 0.1 1 123 . 22 GLY H H 7.73 0.02 1 124 . 22 GLY HA2 H 4.45 0.02 1 125 . 22 GLY HA3 H 3.20 0.02 1 126 . 22 GLY CA C 44.2 0.1 1 127 . 23 PRO HA H 4.39 0.02 1 128 . 23 PRO HB2 H 1.67 0.02 1 129 . 23 PRO HB3 H 2.15 0.02 1 130 . 23 PRO HG2 H 2.01 0.02 1 131 . 23 PRO HG3 H 2.15 0.02 1 132 . 23 PRO HD2 H 3.72 0.02 1 133 . 23 PRO HD3 H 3.79 0.02 1 134 . 23 PRO CA C 61.0 0.1 1 135 . 24 CYS H H 7.61 0.02 1 136 . 24 CYS HA H 4.41 0.02 1 137 . 24 CYS HB2 H 1.30 0.02 1 138 . 24 CYS HB3 H 1.30 0.02 1 139 . 24 CYS CA C 54.3 0.1 1 140 . 25 ALA H H 7.85 0.02 1 141 . 25 ALA HA H 4.10 0.02 1 142 . 25 ALA HB H 1.23 0.02 1 143 . 25 ALA CA C 56.6 0.1 1 144 . 26 ASN H H 8.81 0.02 1 145 . 26 ASN HA H 4.50 0.02 1 146 . 26 ASN HB2 H 2.78 0.02 1 147 . 26 ASN HB3 H 2.78 0.02 1 148 . 26 ASN HD21 H 7.55 0.02 1 149 . 26 ASN HD22 H 6.83 0.02 1 150 . 26 ASN CA C 54.7 0.1 1 151 . 27 CYS H H 7.80 0.02 1 152 . 27 CYS HA H 4.59 0.02 1 153 . 27 CYS HB2 H 3.42 0.02 1 154 . 27 CYS HB3 H 3.00 0.02 1 155 . 27 CYS CA C 55.4 0.1 1 156 . 28 LEU H H 7.54 0.02 1 157 . 28 LEU HA H 4.20 0.02 1 158 . 28 LEU HB2 H 1.66 0.02 1 159 . 28 LEU HB3 H 1.62 0.02 1 160 . 28 LEU HG H 1.36 0.02 1 161 . 28 LEU HD1 H 0.45 0.02 2 162 . 28 LEU HD2 H 0.12 0.02 2 163 . 28 LEU CA C 55.3 0.1 1 164 . 29 ALA H H 7.34 0.02 1 165 . 29 ALA HA H 4.28 0.02 1 166 . 29 ALA HB H 1.45 0.02 1 167 . 29 ALA CA C 55.4 0.1 1 168 . 30 GLY H H 9.34 0.02 1 169 . 30 GLY HA2 H 3.91 0.02 1 170 . 30 GLY HA3 H 3.82 0.02 1 171 . 30 GLY CA C 46.7 0.1 1 172 . 31 TYR H H 7.37 0.02 1 173 . 31 TYR HA H 4.71 0.02 1 174 . 31 TYR HB2 H 2.78 0.02 1 175 . 31 TYR HB3 H 3.10 0.02 1 176 . 31 TYR HD1 H 6.97 0.02 1 177 . 31 TYR HD2 H 6.97 0.02 1 178 . 31 TYR HE1 H 6.73 0.02 1 179 . 31 TYR HE2 H 6.73 0.02 1 180 . 31 TYR CA C 54.2 0.1 1 181 . 32 PRO HA H 4.72 0.02 1 182 . 32 PRO HB2 H 0.88 0.02 1 183 . 32 PRO HB3 H 2.10 0.02 1 184 . 32 PRO HG2 H 1.34 0.02 1 185 . 32 PRO HG3 H 1.68 0.02 1 186 . 32 PRO HD2 H 3.33 0.02 2 187 . 32 PRO HD3 H 3.30 0.02 2 188 . 32 PRO CA C 57.7 0.1 1 189 . 33 ALA H H 9.22 0.02 1 190 . 33 ALA HA H 3.94 0.02 1 191 . 33 ALA HB H 1.38 0.02 1 192 . 33 ALA CA C 56.2 0.1 1 193 . 34 GLY H H 9.54 0.02 1 194 . 34 GLY HA2 H 3.99 0.02 1 195 . 34 GLY HA3 H 3.88 0.02 1 196 . 34 GLY CA C 46.2 0.1 1 197 . 35 CYS H H 7.86 0.02 1 198 . 35 CYS HA H 4.25 0.02 1 199 . 35 CYS HB2 H 3.03 0.02 2 200 . 35 CYS HB3 H 2.90 0.02 2 201 . 35 CYS CA C 61.7 0.1 1 202 . 36 SER H H 7.65 0.02 1 203 . 36 SER HA H 4.44 0.02 1 204 . 36 SER HB2 H 3.89 0.02 2 205 . 36 SER HB3 H 3.93 0.02 2 206 . 36 SER CA C 68.4 0.1 1 207 . 37 ASN H H 7.60 0.02 1 208 . 37 ASN HA H 4.88 0.02 1 209 . 37 ASN HB2 H 3.17 0.02 1 210 . 37 ASN HB3 H 2.77 0.02 1 211 . 37 ASN HD21 H 7.75 0.02 1 212 . 37 ASN HD22 H 7.19 0.02 1 213 . 37 ASN CA C 51.1 0.1 1 214 . 38 SER H H 9.24 0.02 1 215 . 38 SER HA H 4.27 0.02 1 216 . 38 SER HB2 H 4.05 0.02 2 217 . 38 SER HB3 H 3.97 0.02 2 218 . 38 SER CA C 61.2 0.1 1 219 . 39 ASP H H 8.35 0.02 1 220 . 39 ASP HA H 4.95 0.02 1 221 . 39 ASP HB2 H 2.62 0.02 2 222 . 39 ASP HB3 H 2.51 0.02 2 223 . 39 ASP CA C 55.2 0.1 1 224 . 40 CYS H H 8.46 0.02 1 225 . 40 CYS HA H 5.03 0.02 1 226 . 40 CYS HB2 H 3.55 0.02 1 227 . 40 CYS HB3 H 2.92 0.02 1 228 . 40 CYS CA C 54.6 0.1 1 229 . 41 THR H H 7.74 0.02 1 230 . 41 THR HA H 3.75 0.02 1 231 . 41 THR HB H 4.01 0.02 1 232 . 41 THR HG2 H 1.31 0.02 1 233 . 41 THR CA C 67.8 0.1 1 234 . 42 ALA H H 8.66 0.02 1 235 . 42 ALA HA H 4.07 0.02 1 236 . 42 ALA HB H 1.22 0.02 1 237 . 42 ALA CA C 55.4 0.1 1 238 . 43 PHE H H 8.22 0.02 1 239 . 43 PHE HA H 3.83 0.02 1 240 . 43 PHE HB2 H 3.20 0.02 1 241 . 43 PHE HB3 H 2.99 0.02 1 242 . 43 PHE HD1 H 7.38 0.02 1 243 . 43 PHE HD2 H 7.38 0.02 1 244 . 43 PHE HZ H 7.19 0.02 1 245 . 43 PHE CA C 60.2 0.1 1 246 . 44 LEU H H 8.67 0.02 1 247 . 44 LEU HA H 3.68 0.02 1 248 . 44 LEU HB2 H 2.12 0.02 1 249 . 44 LEU HB3 H 1.24 0.02 1 250 . 44 LEU HG H 1.92 0.02 1 251 . 44 LEU HD1 H 0.88 0.02 1 252 . 44 LEU HD2 H 0.73 0.02 1 253 . 44 LEU CA C 57.8 0.1 1 254 . 45 SER H H 8.33 0.02 1 255 . 45 SER HA H 4.36 0.02 1 256 . 45 SER HB2 H 3.89 0.02 2 257 . 45 SER HB3 H 3.85 0.02 2 258 . 45 SER CA C 58.6 0.1 1 259 . 46 GLN H H 8.65 0.02 1 260 . 46 GLN HA H 4.03 0.02 1 261 . 46 GLN HB2 H 2.04 0.02 1 262 . 46 GLN HB3 H 1.92 0.02 1 263 . 46 GLN HG2 H 2.36 0.02 2 264 . 46 GLN HG3 H 2.22 0.02 2 265 . 46 GLN HE21 H 7.13 0.02 2 266 . 46 GLN HE22 H 6.70 0.02 2 267 . 46 GLN CA C 58.3 0.1 1 268 . 47 CYS H H 8.15 0.02 1 269 . 47 CYS HA H 4.46 0.02 1 270 . 47 CYS HB2 H 2.04 0.02 2 271 . 47 CYS HB3 H 2.34 0.02 2 272 . 47 CYS CA C 58.4 0.1 1 273 . 48 TYR H H 6.91 0.02 1 274 . 48 TYR HA H 4.33 0.02 1 275 . 48 TYR HB2 H 2.42 0.02 1 276 . 48 TYR HB3 H 2.98 0.02 1 277 . 48 TYR HD1 H 6.43 0.02 1 278 . 48 TYR HD2 H 6.43 0.02 1 279 . 48 TYR HE1 H 6.21 0.02 1 280 . 48 TYR HE2 H 6.21 0.02 1 281 . 48 TYR CA C 59.5 0.1 1 282 . 49 GLY H H 7.51 0.02 1 283 . 49 GLY HA2 H 4.00 0.02 1 284 . 49 GLY HA3 H 3.88 0.02 1 285 . 49 GLY CA C 46.1 0.1 1 286 . 50 GLY H H 7.88 0.02 1 287 . 50 GLY HA2 H 4.13 0.02 1 288 . 50 GLY HA3 H 3.69 0.02 1 289 . 50 GLY CA C 44.4 0.1 1 290 . 51 CYS H H 8.03 0.02 1 291 . 51 CYS HA H 4.29 0.02 1 292 . 51 CYS HB2 H 3.31 0.02 2 293 . 51 CYS HB3 H 2.98 0.02 2 294 . 51 CYS CA C 57.4 0.1 1 stop_ save_