data_4886 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; Backbone 1H and 15N and 1HB chemical shift assignments for Azotobacter vinelandii C69A apoflavodoxin ; _BMRB_accession_number 4886 _BMRB_flat_file_name bmr4886.str _Entry_type original _Submission_date 2000-10-26 _Accession_date 2000-10-26 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Steensma Elles . . 2 'van Mierlo' Carlo P.M. . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 1 coupling_constants 1 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 496 "15N chemical shifts" 146 "coupling constants" 76 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2000-12-04 original author . stop_ loop_ _Related_BMRB_accession_number _Relationship 376 . 1379 . 4881 . stop_ _Original_release_date 2000-12-04 save_ ############################# # Citation for this entry # ############################# save_entry_citation _Saveframe_category entry_citation _Citation_full . _Citation_title ; Structural characterisation of apoflavodoxin shows that the location of the stable nucleus differs among proteins with a flavodoxin-like topology ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code 98411455 _PubMed_ID 9737928 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Steensma Elles . . 2 'van Mierlo' Carlo P.M. . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of Molecular Biology' _Journal_volume 282 _Journal_issue . _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first 653 _Page_last 666 _Year 1998 _Details . loop_ _Keyword apoflavodoxin 'hydrogen/deuterium exchange' 'protein stability' 'protein folding' 'NMR spectroscopy' stop_ save_ ####################################### # Cited references within the entry # ####################################### save_ref_1 _Saveframe_category citation _Citation_full ; Steensma E, van Mierlo CP. Structural characterisation of apoflavodoxin shows that the location of the stable nucleus differs among proteins with a flavodoxin-like topology. ; _Citation_title 'Structural characterisation of apoflavodoxin shows that the location of the stable nucleus differs among proteins with a flavodoxin-like topology.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9737928 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Steensma E. . . 2 'van Mierlo' 'C. P.' P. . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of molecular biology' _Journal_volume 282 _Journal_issue 3 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 653 _Page_last 666 _Year 1998 _Details ; The structural characteristics of Azotobacter vinelandii apoflavodoxin II have been determined using multidimensional NMR spectroscopy. Apoflavodoxin has a stable, well-ordered core but its flavin binding region is flexible. The local stability of apoflavodoxin was probed using hydrogen/deuterium exchange measurements. The existence of an apoflavodoxin equilibrium folding intermediate is inferred from the non-coincidence of CD and fluorescence unfolding curves obtained for the guanidinium hydrochloride induced unfolding of apoflavodoxin. We suggest that the structured part of the putative intermediate is composed of the elements of secondary structure which have the slowest exchanging amide protons in the native protein. These elements are strands beta1, beta3, beta4 and beta5a and helices alpha4 and alpha5. We propose that it is a general feature of flavodoxins that the stable nucleus resides in the C-terminal part of these proteins. The results on flavodoxin are compared with those on two sequentially unrelated proteins sharing the flavodoxin-like fold: Che Y and cutinase. It is shown that the stable nucleus is found in different parts of the flavodoxin-like topology. ; save_ save_ref_2 _Saveframe_category citation _Citation_full ; Steensma E, Nijman MJ, Bollen YJ, de Jager PA, van den Berg WA, van Dongen WM, van Mierlo CP. Apparent local stability of the secondary structure of Azotobacter vinelandii holoflavodoxin II as probed by hydrogen exchange: implications for redox potential regulation and flavodoxin folding. ; _Citation_title 'Apparent local stability of the secondary structure of Azotobacter vinelandii holoflavodoxin II as probed by hydrogen exchange: implications for redox potential regulation and flavodoxin folding.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9521106 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Steensma E. . . 2 Nijman 'M. J.' J. . 3 Bollen 'Y. J.' J. . 4 'de Jager' 'P. A.' A. . 5 'van den Berg' 'W. A.' A. . 6 'van Dongen' 'W. M.' M. . 7 'van Mierlo' 'C. P.' P. . stop_ _Journal_abbreviation 'Protein Sci.' _Journal_name_full 'Protein science : a publication of the Protein Society' _Journal_volume 7 _Journal_issue 2 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 306 _Page_last 317 _Year 1998 _Details ; As a first step to determine the folding pathway of a protein with an alpha/beta doubly wound topology, the 1H, 13C, and 15N backbone chemical shifts of Azotobacter vinelandii holoflavodoxin II (179 residues) have been determined using multidimensional NMR spectroscopy. Its secondary structure is shown to contain a five-stranded parallel beta-sheet (beta2-beta1-beta3-beta4-beta5) and five alpha-helices. Exchange rates for the individual amide protons of holoflavodoxin were determined using the hydrogen exchange method. The amide protons of 65 residues distributed throughout the structure of holoflavodoxin exchange slowly at pH* 6.2 [kex < 10(-5) s(-1)] and can be used as probes in future folding studies. Measured exchange rates relate to apparent local free energies for transient opening. We propose that the amide protons in the core of holoflavodoxin only exchange by global unfolding of the apo state of the protein. The results obtained are discussed with respect to their implications for flavodoxin folding and for modulation of the flavin redox potential by the apoprotein. We do not find any evidence that A. vinelandii holoflavodoxin II is divided into two subdomains based on its amide proton exchange rates, as opposed to what is found for the structurally but not sequentially homologous alpha/beta doubly wound protein Che Y. ; save_ save_ref_3 _Saveframe_category citation _Citation_full ; van Mierlo CP, van Dongen WM, Vergeldt F, van Berkel WJ, Steensma E. The equilibrium unfolding of Azotobacter vinelandii apoflavodoxin II occurs via a relatively stable folding intermediate. ; _Citation_title 'The equilibrium unfolding of Azotobacter vinelandii apoflavodoxin II occurs via a relatively stable folding intermediate.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9827999 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 'van Mierlo' 'C. P.' P. . 2 'van Dongen' 'W. M.' M. . 3 Vergeldt F. . . 4 'van Berkel' 'W. J.' J. . 5 Steensma E. . . stop_ _Journal_abbreviation 'Protein Sci.' _Journal_name_full 'Protein science : a publication of the Protein Society' _Journal_volume 7 _Journal_issue 11 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 2331 _Page_last 2344 _Year 1998 _Details ; A flavodoxin from Azotobacter vinelandii is chosen as a model system to study the folding of alpha/beta doubly wound proteins. The guanidinium hydrochloride induced unfolding of apoflavodoxin is demonstrated to be reversible. Apoflavodoxin thus can fold in the absence of the FMN cofactor. The unfolding curves obtained for wild-type, C69A and C69S apoflavodoxin as monitored by circular dichroism and fluorescence spectroscopy do not coincide. Apoflavodoxin unfolding occurs therefore not via a simple two-state mechanism. The experimental data can be described by a three-state mechanism of apoflavodoxin equilibrium unfolding in which a relatively stable intermediate is involved. The intermediate species lacks the characteristic tertiary structure of native apoflavodoxin as deduced from fluorescence spectroscopy, but has significant secondary structure as inferred from circular dichroism spectroscopy. Both spectroscopic techniques show that thermally-induced unfolding of apoflavodoxin also proceeds through formation of a similar molten globule-like species. Thermal unfolding of apoflavodoxin is accompanied by anomalous circular dichroism characteristics: the negative ellipticity at 222 nM increases in the transition zone of unfolding. This effect is most likely attributable to changes in tertiary interactions of aromatic side chains upon protein unfolding. From the presented results and hydrogen/deuterium exchange data, a model for the equilibrium unfolding of apoflavodoxin is presented. ; save_ save_ref_4 _Saveframe_category citation _Citation_full ; Steensma E, Heering HA, Hagen WR, Van Mierlo CP. Redox properties of wild-type, Cys69Ala, and Cys69Ser Azotobacter vinelandii flavodoxin II as measured by cyclic voltammetry and EPR spectroscopy,. ; _Citation_title 'Redox properties of wild-type, Cys69Ala, and Cys69Ser Azotobacter vinelandii flavodoxin II as measured by cyclic voltammetry and EPR spectroscopy,.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 8631324 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Steensma E. . . 2 Heering 'H. A.' A. . 3 Hagen 'W. R.' R. . 4 'Van Mierlo' 'C. P.' P. . stop_ _Journal_abbreviation 'Eur. J. Biochem.' _Journal_name_full 'European journal of biochemistry / FEBS' _Journal_volume 235 _Journal_issue 1-2 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 167 _Page_last 172 _Year 1996 _Details ; This study deals with the detailed electrochemistry and complete EPR-monitored titrations of flavodoxin II of Azotobacter vinelandii (ATCC 478). Since wild-type flavodoxin dimerises via intermolecular disulphide bond formation between Cys69 residues, Cys69 has been replaced by both an alanine and a serine residue. Redox properties of the C69A and C69S flavodoxin mutants were compared to those of wild-type flavodoxin. In the presence of the promotor neomycin, C69A and C69S flavodoxin showed a reversible response of the semiquinone/hydroquinone couple at the glassy carbon electrode. However, the addition of dithiothreitol proved to be necessary for the stabilisation of the wild-type flavodoxin response. EPR-monitored redox titrations of wild-type and C69A flavodoxin at high and low pH confirmed the redox potentials measured using cyclic voltammetry. The pH dependence of the semiquinone/hydroquinone redox potentials cannot be described using a model assuming one redox-linked pK. Instead, the presence of at least two redox-linked protonation sites is suggested: pKred.1 = 5.39 +/- 0.08, pKox = 7.29 +/- 0.14, and pKred.2 = 7.84 +/- 0.14 with Em.7 = -459 +/- 4 mV, and a constant redox potential at high pH of -485 +/- 4 mV. The dependence of the semiquinone/hydroquinone redox potential on temperature is -0.5 +/- 0.1 mV . K(-1), yielding delta H degrees = 28.6 +/- 1.5 kJ . mol(1) and delta S degrees = -50.0 +/- 6.2 J . mol(-1) . K(-1). No significant differences in redox properties of wild-type, C69A, and C69S flavodoxin were observed. The electrochemical data suggest that replacement of Cys69 in the vicinity of the FMN by either an alanine or a serine residue does not alter the dielectric properties and structure of A. vinelandii flavodoxin II. ; save_ save_ref_5 _Saveframe_category citation _Citation_full ; van Mierlo, C.P.M. and Steensma, E.; Journal of Molecular Catalysis B: Enzymatic 7 (1999) 147-156. Stabilisation centres differ between structurally homologous proteins as shown by NMR spectroscopy ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref_6 _Saveframe_category citation _Citation_full ; van Mierlo CP, Steensma E. Protein folding and stability investigated by fluorescence, circular dichroism (CD), and nuclear magnetic resonance (NMR) spectroscopy: the flavodoxin story. ; _Citation_title 'Protein folding and stability investigated by fluorescence, circular dichroism (CD), and nuclear magnetic resonance (NMR) spectroscopy: the flavodoxin story.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 10867188 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 'van Mierlo' 'C. P.' P. . 2 Steensma E. . . stop_ _Journal_abbreviation 'J. Biotechnol.' _Journal_name_full 'Journal of biotechnology' _Journal_volume 79 _Journal_issue 3 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 281 _Page_last 298 _Year 2000 _Details ; In this review, the experimental results obtained on the folding and stability of Azotobacter vinelandii flavodoxin are summarised. By doing so, three main spectroscopic techniques used to investigate protein folding and stability are briefly introduced. These techniques are: circular dichroism (CD) spectroscopy, fluorescence emission spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy in combination with the hydrogen exchange methodology. Results on the denaturant-induced and thermal equilibrium unfolding of apoflavodoxin from A. vinelandii, i.e. flavodoxin in the absence of the riboflavin-5'-monophosphate (FMN) cofactor, are discussed. A scheme for the equilibrium unfolding of apoflavodoxin is presented which involves a relatively stable molten globule-like intermediate. Denaturant-induced apoflavodoxin (un)folding as followed at the residue-level by NMR shows that the transition of native A. vinelandii apoflavodoxin to its molten globule state is highly co-operative. However, the unfolding of the molten globule to the unfolded state of the protein is non-co-operative. A comparison of the folding of A. vinelandii flavodoxin with the folding of flavodoxin from Anaboena PCC 7119 is made. The local stabilities of apo- and holoflavodoxin from A. vinelandii as measured by NMR spectroscopy are compared. Both Che Y and cutinase, which have no sequence homology with apoflavodoxin but which share the flavodoxin-like topology, have stabilisation centres different from that of apoflavodoxin from A. vinelandii. The stable centres of structurally similar proteins can thus reside in different parts of the same protein topology. Insight in the variations in (local) unfolding processes of structurally similar proteins can be used to stabilise proteins with a flavodoxin-like fold. Finally, the importance of some recent experimental and theoretical developments for the study of flavodoxin folding is briefly discussed. ; save_ save_ref_7 _Saveframe_category citation _Citation_full ; van Mierlo CP, van den Oever JM, Steensma E. Apoflavodoxin (un)folding followed at the residue level by NMR. ; _Citation_title 'Apoflavodoxin (un)folding followed at the residue level by NMR.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 10739257 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 'van Mierlo' 'C. P.' P. . 2 'van den Oever' 'J. M.' M. . 3 Steensma E. . . stop_ _Journal_abbreviation 'Protein Sci.' _Journal_name_full 'Protein science : a publication of the Protein Society' _Journal_volume 9 _Journal_issue 1 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 145 _Page_last 157 _Year 2000 _Details ; The denaturant-induced (un)folding of apoflavodoxin from Azotobacter vinelandii has been followed at the residue level by NMR spectroscopy. NH groups of 21 residues of the protein could be followed in a series of 1H-15N heteronuclear single-quantum coherence spectra recorded at increasing concentrations of guanidinium hydrochloride despite the formation of protein aggregate. These NH groups are distributed throughout the whole apoflavodoxin structure. The midpoints of unfolding determined by NMR coincide with the one obtained by fluorescence emission spectroscopy. Both techniques give rise to unfolding curves with transition zones at significantly lower denaturant concentrations than the one obtained by circular dichroism spectroscopy. The NMR (un)folding data support a mechanism for apoflavodoxin folding in which a relatively stable intermediate is involved. Native apoflavodoxin is shown to cooperatively unfold to a molten globule-like state with extremely broadened NMR resonances. This initial unfolding step is slow on the NMR chemical shift timescale. The subsequent unfolding of the molten globule is faster on the NMR chemical shift timescale and the limited appearance of 1H-15N HSQC cross peaks of unfolded apoflavodoxin in the denaturant range studied indicates that it is noncooperative. ; save_ save_ref_8 _Saveframe_category citation _Citation_full ; Tanaka M, Haniu M, Yasunobu KT, Yoch DC. Complete amino acid sequence of azotoflavin, a flavodoxin from Azotobacter vinelandii. ; _Citation_title 'Complete amino acid sequence of azotoflavin, a flavodoxin from Azotobacter vinelandii.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 889809 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Tanaka M. . . 2 Haniu M. . . 3 Yasunobu 'K. T.' T. . 4 Yoch 'D. C.' C. . stop_ _Journal_abbreviation Biochemistry _Journal_name_full Biochemistry _Journal_volume 16 _Journal_issue 16 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 3525 _Page_last 3537 _Year 1977 _Details . save_ ################################## # Molecular system description # ################################## save_system_apoflavodoxin _Saveframe_category molecular_system _Mol_system_name 'Azotobacter vinelandii C69A apoflavodoxin II' _Abbreviation_common apoflavodoxin _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label 'C69A apoflavodoxin' $apoflavodoxin stop_ _System_molecular_weight . _System_physical_state native _System_oligomer_state monomer _System_paramagnetic no _System_thiol_state 'not present' loop_ _Biological_function 'holoflavodoxin is an electron transfer protein' stop_ _Database_query_date . _Details . save_ ######################## # Monomeric polymers # ######################## save_apoflavodoxin _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common 'Azotobacter vinelandii apoflavodoxin II' _Name_variant C69A _Abbreviation_common apoflavodoxin _Molecular_mass 20000 _Mol_thiol_state 'not present' _Details . ############################## # Polymer residue sequence # ############################## _Residue_count 179 _Mol_residue_sequence ; AKIGLFFGSNTGKTRKVAKS IKKRFDDETMSDALNVNRVS AEDFAQYQFLILGTPTLGEG ELPGLSSDAENESWEEFLPK IEGLDFSGKTVALFGLGDQV GYPENYLDALGELYSFFKDR GAKIVGSWSTDGYEFESSEA VVDGKFVGLALDLDNQSGKT DERVAAWLAQIAPEFGLSL ; loop_ _Residue_seq_code _Residue_label 1 ALA 2 LYS 3 ILE 4 GLY 5 LEU 6 PHE 7 PHE 8 GLY 9 SER 10 ASN 11 THR 12 GLY 13 LYS 14 THR 15 ARG 16 LYS 17 VAL 18 ALA 19 LYS 20 SER 21 ILE 22 LYS 23 LYS 24 ARG 25 PHE 26 ASP 27 ASP 28 GLU 29 THR 30 MET 31 SER 32 ASP 33 ALA 34 LEU 35 ASN 36 VAL 37 ASN 38 ARG 39 VAL 40 SER 41 ALA 42 GLU 43 ASP 44 PHE 45 ALA 46 GLN 47 TYR 48 GLN 49 PHE 50 LEU 51 ILE 52 LEU 53 GLY 54 THR 55 PRO 56 THR 57 LEU 58 GLY 59 GLU 60 GLY 61 GLU 62 LEU 63 PRO 64 GLY 65 LEU 66 SER 67 SER 68 ASP 69 ALA 70 GLU 71 ASN 72 GLU 73 SER 74 TRP 75 GLU 76 GLU 77 PHE 78 LEU 79 PRO 80 LYS 81 ILE 82 GLU 83 GLY 84 LEU 85 ASP 86 PHE 87 SER 88 GLY 89 LYS 90 THR 91 VAL 92 ALA 93 LEU 94 PHE 95 GLY 96 LEU 97 GLY 98 ASP 99 GLN 100 VAL 101 GLY 102 TYR 103 PRO 104 GLU 105 ASN 106 TYR 107 LEU 108 ASP 109 ALA 110 LEU 111 GLY 112 GLU 113 LEU 114 TYR 115 SER 116 PHE 117 PHE 118 LYS 119 ASP 120 ARG 121 GLY 122 ALA 123 LYS 124 ILE 125 VAL 126 GLY 127 SER 128 TRP 129 SER 130 THR 131 ASP 132 GLY 133 TYR 134 GLU 135 PHE 136 GLU 137 SER 138 SER 139 GLU 140 ALA 141 VAL 142 VAL 143 ASP 144 GLY 145 LYS 146 PHE 147 VAL 148 GLY 149 LEU 150 ALA 151 LEU 152 ASP 153 LEU 154 ASP 155 ASN 156 GLN 157 SER 158 GLY 159 LYS 160 THR 161 ASP 162 GLU 163 ARG 164 VAL 165 ALA 166 ALA 167 TRP 168 LEU 169 ALA 170 GLN 171 ILE 172 ALA 173 PRO 174 GLU 175 PHE 176 GLY 177 LEU 178 SER 179 LEU stop_ _Sequence_homology_query_date . _Sequence_homology_query_revised_last_date 2014-09-14 loop_ _Database_name _Database_accession_code _Database_entry_mol_name _Sequence_query_to_submitted_percentage _Sequence_subject_length _Sequence_identity _Sequence_positive _Sequence_homology_expectation_value BMRB 15474 Apoflavodoxin 100.00 179 100.00 100.00 5.71e-123 BMRB 17465 aII 100.00 179 100.00 100.00 5.71e-123 BMRB 4881 holoflavodoxin 100.00 179 100.00 100.00 5.71e-123 PDB 1YOB "C69a Flavodoxin Ii From Azotobacter Vinelandii" 100.00 179 100.00 100.00 5.71e-123 GB AAA22154 "flavodoxin [Azotobacter vinelandii]" 100.00 180 99.44 99.44 1.48e-122 GB AAA64735 "flavodoxin (nifF) [Azotobacter vinelandii]" 100.00 180 99.44 99.44 1.48e-122 GB ACO76434 "Flavodoxin, nifF [Azotobacter vinelandii DJ]" 100.00 180 99.44 99.44 1.48e-122 GB AGK13779 "Flavodoxin, nifF [Azotobacter vinelandii CA]" 100.00 180 99.44 99.44 1.48e-122 GB AGK18380 "Flavodoxin, nifF [Azotobacter vinelandii CA6]" 100.00 180 99.44 99.44 1.48e-122 PRF 752055A flavodoxin 100.00 179 98.88 99.44 8.50e-122 REF WP_012698862 "flavodoxin [Azotobacter vinelandii]" 100.00 180 99.44 99.44 1.48e-122 REF YP_002797409 "Flavodoxin, nifF [Azotobacter vinelandii DJ]" 100.00 180 99.44 99.44 1.48e-122 REF YP_007891221 "Flavodoxin, nifF [Azotobacter vinelandii CA]" 100.00 180 99.44 99.44 1.48e-122 REF YP_007896269 "Flavodoxin, nifF [Azotobacter vinelandii CA6]" 100.00 180 99.44 99.44 1.48e-122 SP P00324 "RecName: Full=Flavodoxin-2 [Azotobacter vinelandii]" 100.00 180 99.44 99.44 1.48e-122 stop_ save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species _ATCC_number $apoflavodoxin . 354 Eubacteria . Azotobacter vinelandii 478 stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_name $apoflavodoxin 'recombinant technology' 'E. coli' Escherichia coli TG2 . stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_sample_1 _Saveframe_category sample _Sample_type solution _Details ; A hydrogen/deuterium exchange experiment was carried out in 150 mM potassium pyrophosphate and 100% D2O ; loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $apoflavodoxin 2 mM [U-15N] 'potassium pyrophosphate' 150 mM . H2O 90 % . D2O 10 % . stop_ save_ ############################ # Computer software used # ############################ save_Felix _Saveframe_category software _Name Felix _Version 2.3 loop_ _Task 'processing of data' stop_ _Details . save_ save_Xeasy _Saveframe_category software _Name Xeasy _Version . loop_ _Task 'spectral analysis' 'peak assignment' 'measurement peak heights' stop_ _Details . save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_spectrometer_1 _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model AMX _Field_strength 500 _Details . save_ ############################# # NMR applied experiments # ############################# save_1H-15N_HSQC_1 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N HSQC' _Sample_label $sample_1 save_ save_ct-HNHA_2 _Saveframe_category NMR_applied_experiment _Experiment_name ct-HNHA _Sample_label $sample_1 save_ save_ct-HNHB_3 _Saveframe_category NMR_applied_experiment _Experiment_name ct-HNHB _Sample_label $sample_1 save_ save_TOCSY-HMQC_4 _Saveframe_category NMR_applied_experiment _Experiment_name TOCSY-HMQC _Sample_label $sample_1 save_ save_HMQC-NOESY-HSQC_5 _Saveframe_category NMR_applied_experiment _Experiment_name HMQC-NOESY-HSQC _Sample_label $sample_1 save_ save_NOESY-HSQC_6 _Saveframe_category NMR_applied_experiment _Experiment_name NOESY-HSQC _Sample_label $sample_1 save_ save_triple-resonance_5_mm_inverse_probe_with_a_self-shielded_z-gradient_7 _Saveframe_category NMR_applied_experiment _Experiment_name 'triple-resonance 5 mm inverse probe with a self-shielded z-gradient' _Sample_label $sample_1 save_ ####################### # Sample conditions # ####################### save_Conditions_sample_1 _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH* 6.0 0.1 n/a temperature 303 0.5 K 'ionic strength' 0.3 0.03 M stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference _Saveframe_category chemical_shift_reference _Details ; 1H chemical shifts were referenced using internal TSP as a standard and pH-corrected values are reported here in ppm relative to DSS TSP is the internal chemical shift reference since this compound was present in the sample. However, the values reported are in ppm relative to DSS. The referencing for entry 4886 is similar to that for entry 4881. ; loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis _Indirect_shift_ratio DSS H 1 'methyl protons' ppm 0.0 internal direct . . . 1.000000000 DSS N 15 'methyl protons' ppm 0.0 . indirect . . . 0.101329118 stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_shifts_set_1 _Saveframe_category assigned_chemical_shifts _Details . loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $Conditions_sample_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name 'C69A apoflavodoxin' _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 1 ALA HA H 4.26 0.02 9 2 . 1 ALA HB H 1.46 0.02 9 3 . 2 LYS N N 120.9 0.1 1 4 . 2 LYS H H 7.68 0.02 1 5 . 2 LYS HA H 4.38 0.02 1 6 . 2 LYS HB2 H 2.25 0.02 2 7 . 2 LYS HB3 H 1.59 0.02 2 8 . 3 ILE N N 117.5 0.1 1 9 . 3 ILE H H 8.18 0.02 1 10 . 3 ILE HA H 4.81 0.02 1 11 . 3 ILE HB H 1.76 0.02 1 12 . 4 GLY N N 117.6 0.1 1 13 . 4 GLY H H 8.67 0.02 1 14 . 4 GLY HA2 H 3.37 0.02 2 15 . 4 GLY HA3 H 2.06 0.02 2 16 . 5 LEU N N 130.5 0.1 1 17 . 5 LEU H H 7.30 0.02 1 18 . 5 LEU HA H 5.40 0.02 1 19 . 5 LEU HB2 H 1.70 0.02 2 20 . 5 LEU HB3 H 1.02 0.02 2 21 . 6 PHE N N 121.1 0.1 1 22 . 6 PHE H H 8.64 0.02 1 23 . 6 PHE HA H 6.08 0.02 1 24 . 6 PHE HB2 H 2.95 0.02 2 25 . 7 PHE HA H 5.97 0.02 1 26 . 7 PHE HB2 H 3.11 0.02 2 27 . 8 GLY N N 105.9 0.1 1 28 . 8 GLY H H 7.37 0.02 1 29 . 8 GLY HA2 H 4.21 0.02 2 30 . 8 GLY HA3 H 3.32 0.02 2 31 . 13 LYS HA H 4.13 0.02 1 32 . 14 THR HA H 3.68 0.02 1 33 . 15 ARG HA H 2.58 0.02 1 34 . 16 LYS N N 118.9 0.1 1 35 . 16 LYS H H 7.42 0.02 1 36 . 16 LYS HA H 3.87 0.02 1 37 . 16 LYS HB2 H 1.99 0.02 2 38 . 17 VAL N N 119.7 0.1 1 39 . 17 VAL H H 7.61 0.02 1 40 . 17 VAL HA H 3.49 0.02 1 41 . 17 VAL HB H 2.00 0.02 1 42 . 18 ALA N N 122.5 0.1 1 43 . 18 ALA H H 8.37 0.02 1 44 . 18 ALA HA H 3.88 0.02 1 45 . 18 ALA HB H 1.38 0.02 1 46 . 19 LYS N N 116.8 0.1 1 47 . 19 LYS H H 8.63 0.02 1 48 . 19 LYS HA H 3.87 0.02 1 49 . 19 LYS HB2 H 1.89 0.02 2 50 . 20 SER N N 116.6 0.1 1 51 . 20 SER H H 7.73 0.02 1 52 . 20 SER HA H 4.22 0.02 1 53 . 20 SER HB2 H 4.03 0.02 2 54 . 21 ILE N N 124.1 0.1 1 55 . 21 ILE H H 7.56 0.02 1 56 . 21 ILE HA H 3.61 0.02 1 57 . 21 ILE HB H 2.15 0.02 1 58 . 22 LYS N N 117.8 0.1 1 59 . 22 LYS H H 7.43 0.02 1 60 . 22 LYS HA H 4.58 0.02 1 61 . 22 LYS HB2 H 1.95 0.02 2 62 . 23 LYS N N 116.6 0.1 1 63 . 23 LYS H H 7.66 0.02 1 64 . 23 LYS HA H 4.08 0.02 1 65 . 23 LYS HB2 H 1.95 0.02 2 66 . 23 LYS HB3 H 1.85 0.02 2 67 . 24 ARG N N 114.6 0.1 1 68 . 24 ARG H H 7.10 0.02 1 69 . 24 ARG HA H 3.97 0.02 1 70 . 24 ARG HB2 H 1.12 0.02 2 71 . 25 PHE N N 117.0 0.1 1 72 . 25 PHE H H 8.15 0.02 1 73 . 25 PHE HA H 5.21 0.02 1 74 . 25 PHE HB2 H 3.21 0.02 2 75 . 25 PHE HB3 H 2.81 0.02 2 76 . 26 ASP N N 122.1 0.1 1 77 . 26 ASP H H 8.80 0.02 1 78 . 26 ASP HA H 4.74 0.02 1 79 . 26 ASP HB2 H 3.41 0.02 2 80 . 26 ASP HB3 H 2.87 0.02 2 81 . 27 ASP N N 117.7 0.1 1 82 . 27 ASP H H 8.55 0.02 1 83 . 27 ASP HA H 4.58 0.02 1 84 . 27 ASP HB2 H 2.90 0.02 2 85 . 27 ASP HB3 H 2.75 0.02 2 86 . 28 GLU N N 119.2 0.1 1 87 . 28 GLU H H 8.04 0.02 1 88 . 28 GLU HA H 4.34 0.02 1 89 . 28 GLU HB2 H 2.15 0.02 2 90 . 29 THR N N 118.4 0.1 1 91 . 29 THR H H 8.16 0.02 1 92 . 29 THR HA H 3.95 0.02 1 93 . 29 THR HB H 4.27 0.02 1 94 . 30 MET N N 121.4 0.1 1 95 . 30 MET H H 8.30 0.02 1 96 . 30 MET HA H 5.33 0.02 1 97 . 30 MET HB2 H 1.68 0.02 2 98 . 31 SER N N 124.8 0.1 1 99 . 31 SER H H 8.72 0.02 1 100 . 31 SER HA H 4.41 0.02 1 101 . 31 SER HB2 H 4.29 0.02 2 102 . 31 SER HB3 H 3.90 0.02 2 103 . 32 ASP N N 114.8 0.1 1 104 . 32 ASP H H 7.91 0.02 1 105 . 32 ASP HA H 4.48 0.02 1 106 . 32 ASP HB2 H 2.56 0.02 2 107 . 33 ALA N N 122.9 0.1 1 108 . 33 ALA H H 8.26 0.02 1 109 . 33 ALA HA H 4.13 0.02 1 110 . 33 ALA HB H 1.27 0.02 1 111 . 35 ASN ND2 N 113.4 0.1 1 112 . 35 ASN HD21 H 6.95 0.02 2 113 . 35 ASN HD22 H 7.72 0.02 2 114 . 37 ASN ND2 N 111.1 0.1 9 115 . 37 ASN HD21 H 6.51 0.02 9 116 . 37 ASN HD22 H 7.10 0.02 9 117 . 40 SER HB2 H 4.50 0.02 2 118 . 40 SER HB3 H 4.16 0.02 2 119 . 41 ALA N N 124.4 0.1 1 120 . 41 ALA H H 9.17 0.02 1 121 . 41 ALA HA H 4.03 0.02 1 122 . 41 ALA HB H 1.42 0.02 1 123 . 42 GLU N N 115.5 0.1 1 124 . 42 GLU H H 8.56 0.02 1 125 . 42 GLU HA H 4.07 0.02 1 126 . 42 GLU HB2 H 2.14 0.02 2 127 . 42 GLU HB3 H 2.05 0.02 2 128 . 43 ASP N N 120.6 0.1 1 129 . 43 ASP H H 7.93 0.02 1 130 . 43 ASP HA H 4.55 0.02 1 131 . 43 ASP HB2 H 3.17 0.02 2 132 . 43 ASP HB3 H 2.93 0.02 2 133 . 44 PHE N N 121.0 0.1 1 134 . 44 PHE H H 8.31 0.02 1 135 . 44 PHE HA H 4.30 0.02 1 136 . 44 PHE HB2 H 3.47 0.02 2 137 . 44 PHE HB3 H 3.12 0.02 2 138 . 45 ALA N N 116.5 0.1 1 139 . 45 ALA H H 8.36 0.02 1 140 . 45 ALA HA H 4.25 0.02 1 141 . 45 ALA HB H 1.66 0.02 1 142 . 46 GLN N N 114.4 0.1 1 143 . 46 GLN H H 7.29 0.02 1 144 . 46 GLN HA H 4.21 0.02 1 145 . 46 GLN HB2 H 2.02 0.02 2 146 . 46 GLN NE2 N 113.0 0.1 1 147 . 46 GLN HE21 H 6.85 0.02 2 148 . 46 GLN HE22 H 7.54 0.02 2 149 . 47 TYR N N 116.5 0.1 1 150 . 47 TYR H H 6.87 0.02 1 151 . 47 TYR HA H 4.54 0.02 1 152 . 47 TYR HB2 H 3.47 0.02 2 153 . 47 TYR HB3 H 2.78 0.02 2 154 . 48 GLN N N 121.6 0.1 1 155 . 48 GLN H H 10.00 0.02 1 156 . 48 GLN HA H 4.26 0.02 1 157 . 48 GLN HB2 H 2.11 0.02 2 158 . 48 GLN NE2 N 112.0 0.1 1 159 . 48 GLN HE21 H 6.91 0.02 2 160 . 48 GLN HE22 H 7.22 0.02 2 161 . 49 PHE N N 115.4 0.1 1 162 . 49 PHE H H 7.28 0.02 1 163 . 49 PHE HA H 5.54 0.02 1 164 . 49 PHE HB2 H 3.13 0.02 2 165 . 50 LEU N N 124.9 0.1 1 166 . 50 LEU H H 9.20 0.02 1 167 . 50 LEU HA H 5.56 0.02 1 168 . 50 LEU HB2 H 1.78 0.02 2 169 . 50 LEU HB3 H 1.42 0.02 2 170 . 51 ILE N N 121.9 0.1 1 171 . 51 ILE H H 9.02 0.02 1 172 . 51 ILE HA H 5.28 0.02 1 173 . 51 ILE HB H 1.68 0.02 1 174 . 52 LEU N N 124.5 0.1 1 175 . 52 LEU H H 8.88 0.02 1 176 . 52 LEU HA H 5.94 0.02 1 177 . 52 LEU HB2 H 1.81 0.02 2 178 . 52 LEU HB3 H 1.41 0.02 2 179 . 53 GLY N N 106.0 0.1 1 180 . 53 GLY H H 8.80 0.02 1 181 . 53 GLY HA2 H 4.34 0.02 2 182 . 53 GLY HA3 H 1.93 0.02 2 183 . 54 THR HA H 5.48 0.02 1 184 . 54 THR HB H 3.87 0.02 1 185 . 68 ASP N N 121.8 0.1 1 186 . 68 ASP H H 8.30 0.02 1 187 . 68 ASP HA H 4.69 0.02 1 188 . 68 ASP HB2 H 2.77 0.02 2 189 . 69 ALA N N 123.4 0.1 1 190 . 69 ALA H H 8.06 0.02 1 191 . 69 ALA HA H 4.36 0.02 1 192 . 69 ALA HB H 1.46 0.02 1 193 . 70 GLU N N 118.7 0.1 1 194 . 70 GLU H H 8.30 0.02 1 195 . 70 GLU HA H 4.34 0.02 1 196 . 70 GLU HB2 H 2.15 0.02 2 197 . 70 GLU HB3 H 2.02 0.02 2 198 . 71 ASN ND2 N 114.0 0.1 1 199 . 71 ASN HD21 H 7.17 0.02 2 200 . 71 ASN HD22 H 7.81 0.02 9 201 . 74 TRP N N 123.0 0.1 9 202 . 74 TRP H H 8.10 0.02 9 203 . 74 TRP HA H 3.51 0.02 1 204 . 74 TRP HB2 H 2.49 0.02 2 205 . 74 TRP HB3 H 2.33 0.02 2 206 . 74 TRP NE1 N 127.1 0.1 1 207 . 74 TRP HE1 H 10.07 0.02 1 208 . 78 LEU HA H 3.69 0.02 1 209 . 79 PRO HA H 4.36 0.02 1 210 . 80 LYS N N 113.1 0.1 1 211 . 80 LYS H H 7.86 0.02 1 212 . 80 LYS HA H 4.07 0.02 1 213 . 80 LYS HB2 H 1.67 0.02 2 214 . 80 LYS HB3 H 1.54 0.02 2 215 . 81 ILE N N 107.9 0.1 1 216 . 81 ILE H H 7.32 0.02 1 217 . 81 ILE HA H 4.64 0.02 1 218 . 81 ILE HB H 2.62 0.02 1 219 . 82 GLU N N 121.0 0.1 1 220 . 82 GLU H H 7.19 0.02 1 221 . 82 GLU HA H 4.20 0.02 1 222 . 82 GLU HB2 H 2.24 0.02 2 223 . 83 GLY N N 107.1 0.1 1 224 . 83 GLY H H 8.64 0.02 1 225 . 83 GLY HA2 H 4.32 0.02 2 226 . 83 GLY HA3 H 3.65 0.02 2 227 . 84 LEU N N 121.0 0.1 1 228 . 84 LEU H H 7.49 0.02 1 229 . 84 LEU HA H 4.32 0.02 1 230 . 84 LEU HB2 H 2.02 0.02 2 231 . 84 LEU HB3 H 1.07 0.02 2 232 . 85 ASP N N 119.5 0.1 1 233 . 85 ASP H H 8.13 0.02 1 234 . 85 ASP HA H 4.82 0.02 1 235 . 85 ASP HB2 H 2.83 0.02 2 236 . 85 ASP HB3 H 2.69 0.02 2 237 . 86 PHE N N 124.9 0.1 1 238 . 86 PHE H H 9.09 0.02 1 239 . 86 PHE HA H 4.49 0.02 1 240 . 86 PHE HB2 H 3.56 0.02 2 241 . 86 PHE HB3 H 2.70 0.02 2 242 . 87 SER N N 117.7 0.1 1 243 . 87 SER H H 8.53 0.02 1 244 . 87 SER HA H 4.42 0.02 1 245 . 87 SER HB2 H 3.94 0.02 2 246 . 88 GLY N N 113.7 0.1 1 247 . 88 GLY H H 8.88 0.02 1 248 . 88 GLY HA2 H 4.25 0.02 2 249 . 88 GLY HA3 H 3.79 0.02 2 250 . 89 LYS N N 121.2 0.1 1 251 . 89 LYS H H 8.05 0.02 1 252 . 89 LYS HA H 4.77 0.02 1 253 . 89 LYS HB2 H 2.27 0.02 2 254 . 89 LYS HB3 H 1.57 0.02 2 255 . 90 THR N N 120.2 0.1 1 256 . 90 THR H H 7.95 0.02 1 257 . 90 THR HA H 5.18 0.02 1 258 . 90 THR HB H 3.73 0.02 1 259 . 91 VAL N N 127.5 0.1 1 260 . 91 VAL H H 9.19 0.02 1 261 . 91 VAL HA H 5.33 0.02 1 262 . 91 VAL HB H 1.73 0.02 1 263 . 92 ALA N N 128.4 0.1 1 264 . 92 ALA H H 8.95 0.02 1 265 . 92 ALA HA H 5.55 0.02 1 266 . 92 ALA HB H 1.58 0.02 1 267 . 93 LEU N N 122.1 0.1 1 268 . 93 LEU H H 10.23 0.02 1 269 . 93 LEU HA H 5.81 0.02 1 270 . 93 LEU HB2 H 1.71 0.02 2 271 . 93 LEU HB3 H 1.30 0.02 2 272 . 94 PHE N N 114.7 0.1 1 273 . 94 PHE H H 8.92 0.02 1 274 . 94 PHE HA H 5.13 0.02 1 275 . 94 PHE HB2 H 2.21 0.02 2 276 . 95 GLY N N 106.9 0.1 1 277 . 95 GLY H H 8.78 0.02 1 278 . 95 GLY HA2 H 5.33 0.02 2 279 . 95 GLY HA3 H 3.09 0.02 2 280 . 96 LEU N N 122.0 0.1 1 281 . 96 LEU H H 7.64 0.02 1 282 . 96 LEU HA H 5.06 0.02 1 283 . 96 LEU HB2 H 1.96 0.02 2 284 . 96 LEU HB3 H 1.45 0.02 2 285 . 97 GLY N N 107.9 0.1 1 286 . 97 GLY H H 8.12 0.02 1 287 . 97 GLY HA2 H 4.54 0.02 2 288 . 97 GLY HA3 H 3.90 0.02 2 289 . 98 ASP HA H 5.20 0.02 9 290 . 99 GLN N N 123.9 0.1 9 291 . 99 GLN H H 8.72 0.02 9 292 . 99 GLN HA H 3.86 0.02 1 293 . 99 GLN HB2 H 2.33 0.02 2 294 . 99 GLN HB3 H 1.08 0.02 2 295 . 100 VAL N N 119.4 0.1 1 296 . 100 VAL H H 7.34 0.02 1 297 . 100 VAL HA H 3.85 0.02 1 298 . 100 VAL HB H 2.04 0.02 1 299 . 101 GLY N N 108.7 0.1 1 300 . 101 GLY H H 8.92 0.02 1 301 . 101 GLY HA2 H 3.80 0.02 2 302 . 101 GLY HA3 H 3.58 0.02 2 303 . 102 TYR N N 116.4 0.1 1 304 . 102 TYR H H 7.47 0.02 1 305 . 102 TYR HA H 5.13 0.02 1 306 . 102 TYR HB2 H 3.14 0.02 2 307 . 103 PRO HA H 4.58 0.02 1 308 . 104 GLU N N 117.7 0.1 1 309 . 104 GLU H H 8.80 0.02 1 310 . 104 GLU HA H 4.66 0.02 1 311 . 104 GLU HB2 H 2.28 0.02 2 312 . 104 GLU HB3 H 2.10 0.02 2 313 . 105 ASN N N 119.0 0.1 1 314 . 105 ASN H H 7.90 0.02 1 315 . 105 ASN HA H 5.13 0.02 1 316 . 105 ASN HB2 H 3.27 0.02 2 317 . 105 ASN HB3 H 3.12 0.02 2 318 . 105 ASN ND2 N 112.3 0.1 1 319 . 105 ASN HD21 H 6.84 0.02 2 320 . 105 ASN HD22 H 8.17 0.02 2 321 . 106 TYR N N 122.1 0.1 1 322 . 106 TYR H H 7.70 0.02 1 323 . 106 TYR HB2 H 3.43 0.02 2 324 . 106 TYR HB3 H 2.65 0.02 2 325 . 109 ALA HA H 4.16 0.02 1 326 . 110 LEU N N 118.6 0.1 1 327 . 110 LEU H H 7.32 0.02 1 328 . 110 LEU HA H 3.85 0.02 1 329 . 110 LEU HB2 H 1.88 0.02 2 330 . 110 LEU HB3 H 1.11 0.02 2 331 . 111 GLY N N 104.9 0.1 1 332 . 111 GLY H H 7.49 0.02 1 333 . 111 GLY HA2 H 3.71 0.02 1 334 . 111 GLY HA3 H 3.71 0.02 1 335 . 112 GLU N N 122.0 0.1 1 336 . 112 GLU H H 7.60 0.02 1 337 . 112 GLU HA H 4.20 0.02 1 338 . 112 GLU HB2 H 2.14 0.02 2 339 . 113 LEU N N 120.9 0.1 1 340 . 113 LEU H H 7.59 0.02 1 341 . 113 LEU HA H 3.93 0.02 1 342 . 113 LEU HB2 H 1.55 0.02 2 343 . 113 LEU HB3 H 1.38 0.02 2 344 . 114 TYR N N 118.7 0.1 1 345 . 114 TYR H H 8.14 0.02 1 346 . 114 TYR HA H 4.02 0.02 1 347 . 114 TYR HB2 H 3.36 0.02 2 348 . 114 TYR HB3 H 3.00 0.02 2 349 . 115 SER N N 114.6 0.1 1 350 . 115 SER H H 8.16 0.02 1 351 . 115 SER HA H 3.87 0.02 1 352 . 115 SER HB2 H 4.02 0.02 2 353 . 116 PHE N N 120.5 0.1 1 354 . 116 PHE H H 7.68 0.02 1 355 . 116 PHE HA H 3.87 0.02 1 356 . 116 PHE HB2 H 2.97 0.02 2 357 . 117 PHE N N 114.5 0.1 1 358 . 117 PHE H H 7.72 0.02 1 359 . 117 PHE HA H 3.87 0.02 1 360 . 117 PHE HB2 H 2.68 0.02 2 361 . 118 LYS N N 124.7 0.1 1 362 . 118 LYS H H 9.07 0.02 1 363 . 118 LYS HA H 3.98 0.02 1 364 . 118 LYS HB2 H 1.64 0.02 2 365 . 118 LYS HB3 H 1.23 0.02 2 366 . 119 ASP N N 119.4 0.1 1 367 . 119 ASP H H 8.41 0.02 1 368 . 119 ASP HA H 4.48 0.02 1 369 . 119 ASP HB2 H 2.66 0.02 2 370 . 120 ARG N N 116.7 0.1 1 371 . 120 ARG H H 6.78 0.02 1 372 . 120 ARG HA H 4.61 0.02 1 373 . 120 ARG HB2 H 2.72 0.02 2 374 . 120 ARG HB3 H 1.37 0.02 2 375 . 121 GLY N N 105.4 0.1 1 376 . 121 GLY H H 7.51 0.02 1 377 . 121 GLY HA2 H 4.39 0.02 2 378 . 121 GLY HA3 H 3.86 0.02 2 379 . 122 ALA N N 121.0 0.1 1 380 . 122 ALA H H 7.69 0.02 1 381 . 122 ALA HA H 4.51 0.02 1 382 . 122 ALA HB H 1.23 0.02 1 383 . 123 LYS N N 123.6 0.1 1 384 . 123 LYS H H 8.58 0.02 1 385 . 123 LYS HA H 4.55 0.02 1 386 . 123 LYS HB2 H 2.06 0.02 2 387 . 123 LYS HB3 H 1.85 0.02 2 388 . 124 ILE N N 128.1 0.1 1 389 . 124 ILE H H 8.48 0.02 1 390 . 124 ILE HA H 5.53 0.02 1 391 . 124 ILE HB H 2.05 0.02 1 392 . 125 VAL N N 122.9 0.1 1 393 . 125 VAL H H 9.00 0.02 1 394 . 125 VAL HA H 5.07 0.02 1 395 . 125 VAL HB H 2.46 0.02 1 396 . 126 GLY N N 107.7 0.1 1 397 . 126 GLY H H 8.92 0.02 1 398 . 126 GLY HA2 H 4.72 0.02 2 399 . 126 GLY HA3 H 3.86 0.02 2 400 . 127 SER N N 114.3 0.1 1 401 . 127 SER H H 7.89 0.02 1 402 . 127 SER HA H 4.53 0.02 1 403 . 127 SER HB2 H 4.20 0.02 2 404 . 127 SER HB3 H 4.07 0.02 2 405 . 128 TRP N N 123.0 0.1 1 406 . 128 TRP H H 8.76 0.02 1 407 . 128 TRP HA H 5.53 0.02 1 408 . 128 TRP HB2 H 3.51 0.02 2 409 . 128 TRP HB3 H 3.12 0.02 2 410 . 128 TRP NE1 N 129.0 0.1 1 411 . 128 TRP HE1 H 10.35 0.02 1 412 . 129 SER N N 120.3 0.1 1 413 . 129 SER H H 7.54 0.02 1 414 . 129 SER HA H 4.49 0.02 1 415 . 129 SER HB2 H 3.93 0.02 2 416 . 129 SER HB3 H 3.62 0.02 2 417 . 130 THR N N 113.2 0.1 1 418 . 130 THR H H 8.47 0.02 1 419 . 130 THR HA H 4.48 0.02 1 420 . 130 THR HB H 4.58 0.02 1 421 . 131 ASP N N 125.0 0.1 1 422 . 131 ASP H H 8.42 0.02 1 423 . 131 ASP HA H 4.60 0.02 1 424 . 131 ASP HB2 H 2.67 0.02 2 425 . 132 GLY N N 112.2 0.1 1 426 . 132 GLY H H 9.09 0.02 1 427 . 132 GLY HA2 H 4.24 0.02 2 428 . 132 GLY HA3 H 3.76 0.02 2 429 . 133 TYR N N 118.7 0.1 1 430 . 133 TYR H H 7.86 0.02 1 431 . 133 TYR HA H 5.08 0.02 1 432 . 133 TYR HB2 H 3.43 0.02 2 433 . 133 TYR HB3 H 3.07 0.02 2 434 . 134 GLU N N 123.7 0.1 1 435 . 134 GLU H H 9.30 0.02 1 436 . 134 GLU HA H 4.74 0.02 1 437 . 134 GLU HB2 H 2.00 0.02 2 438 . 135 PHE N N 118.2 0.1 1 439 . 135 PHE H H 7.59 0.02 1 440 . 135 PHE HA H 4.90 0.02 1 441 . 135 PHE HB2 H 3.42 0.02 2 442 . 135 PHE HB3 H 3.20 0.02 2 443 . 136 GLU N N 120.3 0.1 1 444 . 136 GLU H H 9.02 0.02 1 445 . 136 GLU HA H 4.46 0.02 1 446 . 136 GLU HB2 H 2.12 0.02 2 447 . 136 GLU HB3 H 1.87 0.02 2 448 . 137 SER N N 112.8 0.1 1 449 . 137 SER H H 8.48 0.02 1 450 . 137 SER HA H 4.88 0.02 1 451 . 137 SER HB2 H 4.01 0.02 2 452 . 138 SER N N 113.8 0.1 1 453 . 138 SER H H 8.39 0.02 1 454 . 138 SER HA H 4.77 0.02 1 455 . 138 SER HB2 H 4.06 0.02 2 456 . 138 SER HB3 H 3.43 0.02 2 457 . 139 GLU N N 128.3 0.1 1 458 . 139 GLU H H 9.40 0.02 1 459 . 139 GLU HA H 4.50 0.02 1 460 . 139 GLU HB2 H 2.40 0.02 2 461 . 139 GLU HB3 H 1.94 0.02 2 462 . 140 ALA N N 119.3 0.1 1 463 . 140 ALA H H 8.69 0.02 1 464 . 140 ALA HA H 4.16 0.02 1 465 . 140 ALA HB H 1.44 0.02 1 466 . 141 VAL N N 118.5 0.1 1 467 . 141 VAL H H 6.81 0.02 1 468 . 141 VAL HA H 4.49 0.02 1 469 . 141 VAL HB H 1.94 0.02 1 470 . 142 VAL N N 128.7 0.1 1 471 . 142 VAL H H 8.69 0.02 1 472 . 142 VAL HA H 4.14 0.02 1 473 . 142 VAL HB H 1.62 0.02 1 474 . 143 ASP N N 127.6 0.1 1 475 . 143 ASP H H 9.35 0.02 1 476 . 143 ASP HA H 4.33 0.02 1 477 . 143 ASP HB2 H 3.03 0.02 2 478 . 143 ASP HB3 H 2.69 0.02 2 479 . 144 GLY N N 101.9 0.1 1 480 . 144 GLY H H 8.34 0.02 1 481 . 144 GLY HA2 H 4.11 0.02 2 482 . 144 GLY HA3 H 3.53 0.02 2 483 . 145 LYS N N 119.2 0.1 1 484 . 145 LYS H H 7.57 0.02 1 485 . 145 LYS HA H 4.68 0.02 1 486 . 145 LYS HB2 H 1.97 0.02 2 487 . 145 LYS HB3 H 1.69 0.02 2 488 . 146 PHE N N 119.7 0.1 1 489 . 146 PHE H H 9.15 0.02 1 490 . 146 PHE HA H 5.27 0.02 1 491 . 146 PHE HB2 H 3.50 0.02 2 492 . 146 PHE HB3 H 3.30 0.02 2 493 . 147 VAL N N 112.3 0.1 1 494 . 147 VAL H H 8.50 0.02 1 495 . 147 VAL HA H 3.98 0.02 1 496 . 147 VAL HB H 2.04 0.02 1 497 . 148 GLY N N 106.1 0.1 1 498 . 148 GLY H H 7.07 0.02 1 499 . 148 GLY HA2 H 4.81 0.02 2 500 . 148 GLY HA3 H 3.91 0.02 2 501 . 149 LEU N N 117.0 0.1 1 502 . 149 LEU H H 7.44 0.02 1 503 . 149 LEU HA H 2.86 0.02 1 504 . 150 ALA N N 127.7 0.1 1 505 . 150 ALA H H 5.24 0.02 1 506 . 150 ALA HA H 4.22 0.02 1 507 . 150 ALA HB H 0.20 0.02 1 508 . 151 LEU N N 123.5 0.1 1 509 . 151 LEU H H 8.65 0.02 1 510 . 151 LEU HA H 4.89 0.02 1 511 . 151 LEU HB2 H 1.95 0.02 2 512 . 151 LEU HB3 H 1.27 0.02 2 513 . 152 ASP N N 120.2 0.1 1 514 . 152 ASP H H 8.09 0.02 1 515 . 152 ASP HA H 5.38 0.02 1 516 . 153 LEU N N 128.0 0.1 1 517 . 153 LEU H H 9.14 0.02 1 518 . 153 LEU HA H 4.03 0.02 1 519 . 153 LEU HB2 H 1.93 0.02 2 520 . 153 LEU HB3 H 1.46 0.02 2 521 . 154 ASP N N 120.5 0.1 1 522 . 154 ASP H H 8.54 0.02 1 523 . 154 ASP HA H 4.72 0.02 1 524 . 154 ASP HB2 H 2.84 0.02 2 525 . 154 ASP HB3 H 2.72 0.02 2 526 . 155 ASN N N 114.9 0.1 1 527 . 155 ASN H H 9.01 0.02 1 528 . 155 ASN HA H 4.98 0.02 1 529 . 155 ASN HB2 H 2.98 0.02 2 530 . 155 ASN HB3 H 2.58 0.02 2 531 . 155 ASN ND2 N 109.4 0.1 1 532 . 155 ASN HD21 H 6.11 0.02 2 533 . 155 ASN HD22 H 8.73 0.02 2 534 . 156 GLN N N 117.0 0.1 9 535 . 156 GLN H H 7.44 0.02 9 536 . 156 GLN HA H 5.02 0.02 9 537 . 156 GLN HB2 H 2.26 0.02 2 538 . 156 GLN HB3 H 2.11 0.02 2 539 . 156 GLN NE2 N 114.4 0.1 1 540 . 156 GLN HE21 H 6.89 0.02 2 541 . 156 GLN HE22 H 7.81 0.02 9 542 . 157 SER N N 118.4 0.1 9 543 . 157 SER H H 8.77 0.02 9 544 . 157 SER HA H 4.08 0.02 1 545 . 157 SER HB2 H 4.19 0.02 2 546 . 158 GLY HA2 H 4.02 0.02 1 547 . 158 GLY HA3 H 4.02 0.02 1 548 . 159 LYS N N 117.3 0.1 1 549 . 159 LYS H H 7.46 0.02 1 550 . 159 LYS HA H 4.64 0.02 1 551 . 159 LYS HB2 H 2.11 0.02 2 552 . 159 LYS HB3 H 1.75 0.02 2 553 . 160 THR N N 117.2 0.1 1 554 . 160 THR H H 7.68 0.02 1 555 . 160 THR HA H 3.65 0.02 1 556 . 160 THR HB H 4.32 0.02 1 557 . 161 ASP N N 120.8 0.1 1 558 . 161 ASP H H 8.73 0.02 1 559 . 161 ASP HA H 4.33 0.02 1 560 . 161 ASP HB2 H 2.70 0.02 2 561 . 162 GLU N N 120.3 0.1 1 562 . 162 GLU H H 8.65 0.02 1 563 . 162 GLU HA H 4.25 0.02 1 564 . 162 GLU HB2 H 2.26 0.02 2 565 . 162 GLU HB3 H 2.19 0.02 2 566 . 163 ARG N N 121.4 0.1 1 567 . 163 ARG H H 8.09 0.02 1 568 . 163 ARG HA H 4.39 0.02 1 569 . 163 ARG HB2 H 1.98 0.02 2 570 . 163 ARG HB3 H 1.72 0.02 2 571 . 164 VAL N N 118.1 0.1 1 572 . 164 VAL H H 8.64 0.02 1 573 . 164 VAL HA H 3.39 0.02 1 574 . 164 VAL HB H 2.12 0.02 1 575 . 165 ALA N N 119.3 0.1 1 576 . 165 ALA H H 8.06 0.02 1 577 . 165 ALA HA H 3.99 0.02 1 578 . 165 ALA HB H 1.59 0.02 1 579 . 166 ALA N N 120.8 0.1 1 580 . 166 ALA H H 8.08 0.02 1 581 . 166 ALA HA H 4.45 0.02 1 582 . 166 ALA HB H 2.03 0.02 1 583 . 167 TRP N N 123.8 0.1 1 584 . 167 TRP H H 9.02 0.02 1 585 . 167 TRP HA H 4.45 0.02 1 586 . 167 TRP HB2 H 3.15 0.02 2 587 . 167 TRP HB3 H 2.72 0.02 2 588 . 167 TRP NE1 N 132.6 0.1 1 589 . 167 TRP HE1 H 11.18 0.02 1 590 . 168 LEU N N 117.2 0.1 1 591 . 168 LEU H H 8.87 0.02 1 592 . 168 LEU HA H 3.82 0.02 1 593 . 168 LEU HB2 H 2.08 0.02 2 594 . 168 LEU HB3 H 1.24 0.02 2 595 . 169 ALA N N 118.4 0.1 1 596 . 169 ALA H H 7.57 0.02 1 597 . 169 ALA HA H 4.13 0.02 1 598 . 169 ALA HB H 1.63 0.02 1 599 . 170 GLN N N 118.7 0.1 1 600 . 170 GLN H H 7.93 0.02 1 601 . 170 GLN HA H 4.24 0.02 1 602 . 170 GLN HB2 H 2.59 0.02 2 603 . 170 GLN NE2 N 110.5 0.1 1 604 . 170 GLN HE21 H 7.66 0.02 2 605 . 170 GLN HE22 H 7.87 0.02 2 606 . 171 ILE N N 110.4 0.1 1 607 . 171 ILE H H 7.99 0.02 1 608 . 171 ILE HA H 4.45 0.02 1 609 . 171 ILE HB H 1.91 0.02 1 610 . 172 ALA N N 125.4 0.1 1 611 . 172 ALA H H 7.85 0.02 1 612 . 172 ALA HA H 3.98 0.02 1 613 . 172 ALA HB H 1.68 0.02 1 614 . 173 PRO HA H 4.57 0.02 1 615 . 174 GLU N N 115.7 0.1 1 616 . 174 GLU H H 7.74 0.02 1 617 . 174 GLU HA H 4.38 0.02 1 618 . 174 GLU HB2 H 2.19 0.02 2 619 . 174 GLU HB3 H 2.14 0.02 2 620 . 175 PHE N N 116.6 0.1 1 621 . 175 PHE H H 7.70 0.02 1 622 . 175 PHE HA H 4.13 0.02 1 623 . 175 PHE HB2 H 2.90 0.02 2 624 . 175 PHE HB3 H 2.54 0.02 2 625 . 176 GLY N N 108.8 0.1 1 626 . 176 GLY H H 7.78 0.02 1 627 . 176 GLY HA2 H 3.92 0.02 2 628 . 176 GLY HA3 H 3.76 0.02 2 629 . 177 LEU N N 118.1 0.1 1 630 . 177 LEU H H 7.74 0.02 1 631 . 177 LEU HA H 4.46 0.02 1 632 . 177 LEU HB2 H 1.58 0.02 2 633 . 177 LEU HB3 H 1.36 0.02 2 634 . 178 SER N N 118.2 0.1 1 635 . 178 SER H H 8.66 0.02 1 636 . 178 SER HA H 4.64 0.02 1 637 . 178 SER HB2 H 3.97 0.02 2 638 . 178 SER HB3 H 3.85 0.02 2 639 . 179 LEU N N 131.5 0.1 1 640 . 179 LEU H H 8.04 0.02 1 641 . 179 LEU HA H 4.34 0.02 1 642 . 179 LEU HB2 H 1.64 0.02 2 stop_ save_ ######################## # Coupling constants # ######################## save_J-values_set_1 _Saveframe_category coupling_constants _Details . loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $Conditions_sample_1 _Spectrometer_frequency_1H 500 _Mol_system_component_name 'C69A apoflavodoxin' _Text_data_format . _Text_data . loop_ _Coupling_constant_ID _Coupling_constant_code _Atom_one_residue_seq_code _Atom_one_residue_label _Atom_one_name _Atom_two_residue_seq_code _Atom_two_residue_label _Atom_two_name _Coupling_constant_value _Coupling_constant_min_value _Coupling_constant_max_value _Coupling_constant_value_error 1 3JHNHA 5 LEU H 5 LEU HA 9.7 . . 0.5 2 3JHNHA 6 PHE H 6 PHE HA 11.7 . . 0.5 3 3JHNHA 17 VAL H 17 VAL HA 5.4 . . 0.5 4 3JHNHA 18 ALA H 18 ALA HA 2.2 . . 0.5 5 3JHNHA 19 LYS H 19 LYS HA 4.0 . . 0.5 6 3JHNHA 21 ILE H 21 ILE HA 6.3 . . 0.5 7 3JHNHA 22 LYS H 22 LYS HA 3.2 . . 0.5 8 3JHNHA 24 ARG H 24 ARG HA 8.1 . . 0.5 9 3JHNHA 25 PHE H 25 PHE HA 9.4 . . 0.5 10 3JHNHA 26 ASP H 26 ASP HA 6.0 . . 0.5 11 3JHNHA 31 SER H 31 SER HA 4.3 . . 0.5 12 3JHNHA 33 ALA H 33 ALA HA 5.0 . . 0.5 13 3JHNHA 42 GLU H 42 GLU HA 3.8 . . 0.5 14 3JHNHA 45 ALA H 45 ALA HA 3.9 . . 0.5 15 3JHNHA 46 GLN H 46 GLN HA 5.8 . . 0.5 16 3JHNHA 47 TYR H 47 TYR HA 6.1 . . 0.5 17 3JHNHA 48 GLN H 48 GLN HA 7.5 . . 0.5 18 3JHNHA 49 PHE H 49 PHE HA 10.2 . . 0.5 19 3JHNHA 51 ILE H 51 ILE HA 9.9 . . 0.5 20 3JHNHA 52 LEU H 52 LEU HA 9.4 . . 0.5 21 3JHNHA 69 ALA H 69 ALA HA 5.7 . . 0.5 22 3JHNHA 74 TRP H 74 TRP HA 5.7 . . 0.5 23 3JHNHA 80 LYS H 80 LYS HA 3.8 . . 0.5 24 3JHNHA 81 ILE H 81 ILE HA 10.5 . . 0.5 25 3JHNHA 82 GLU H 82 GLU HA 1.9 . . 0.5 26 3JHNHA 83 GLY H 83 GLY HA2 4.5 . . 0.5 27 3JHNHA 84 LEU H 84 LEU HA 7.7 . . 0.5 28 3JHNHA 85 ASP H 85 ASP HA 8.7 . . 0.5 29 3JHNHA 88 GLY H 88 GLY HA2 3.0 . . 0.5 30 3JHNHA 90 THR H 90 THR HA 8.5 . . 0.5 31 3JHNHA 91 VAL H 91 VAL HA 9.9 . . 0.5 32 3JHNHA 92 ALA H 92 ALA HA 8.8 . . 0.5 33 3JHNHA 93 LEU H 93 LEU HA 9.9 . . 0.5 34 3JHNHA 94 PHE H 94 PHE HA 8.4 . . 0.5 35 3JHNHA 101 GLY H 101 GLY HA2 4.7 . . 0.5 36 3JHNHA 101 GLY H 101 GLY HA3 5.6 . . 0.5 37 3JHNHA 102 TYR H 102 TYR HA 9.9 . . 0.5 38 3JHNHA 110 LEU H 110 LEU HA 6.4 . . 0.5 39 3JHNHA 115 SER H 115 SER HA 3.1 . . 0.5 40 3JHNHA 117 PHE H 117 PHE HA 5.9 . . 0.5 41 3JHNHA 120 ARG H 120 ARG HA 10.0 . . 0.5 42 3JHNHA 121 GLY H 121 GLY HA2 4.1 . . 0.5 43 3JHNHA 123 LYS H 123 LYS HA 9.3 . . 0.5 44 3JHNHA 124 ILE H 124 ILE HA 9.6 . . 0.5 45 3JHNHA 125 VAL H 125 VAL HA 10.5 . . 0.5 46 3JHNHA 126 GLY H 126 GLY HA2 3.0 . . 0.5 47 3JHNHA 128 TRP H 128 TRP HA 10.2 . . 0.5 48 3JHNHA 129 SER H 129 SER HA 3.5 . . 0.5 49 3JHNHA 131 ASP H 131 ASP HA 3.2 . . 0.5 50 3JHNHA 132 GLY H 132 GLY HA2 4.3 . . 0.5 51 3JHNHA 134 GLU H 134 GLU HA 10.0 . . 0.5 52 3JHNHA 136 GLU H 136 GLU HA 10.9 . . 0.5 53 3JHNHA 140 ALA H 140 ALA HA 8.7 . . 0.5 54 3JHNHA 141 VAL H 141 VAL HA 9.9 . . 0.5 55 3JHNHA 142 VAL H 142 VAL HA 10.0 . . 0.5 56 3JHNHA 143 ASP H 143 ASP HA 7.1 . . 0.5 57 3JHNHA 144 GLY H 144 GLY HA2 3.8 . . 0.5 58 3JHNHA 144 GLY H 144 GLY HA3 5.7 . . 0.5 59 3JHNHA 145 LYS H 145 LYS HA 8.9 . . 0.5 60 3JHNHA 146 PHE H 146 PHE HA 6.1 . . 0.5 61 3JHNHA 148 GLY H 148 GLY HA2 1.5 . . 0.5 62 3JHNHA 150 ALA H 150 ALA HA 8.8 . . 0.5 63 3JHNHA 151 LEU H 151 LEU HA 8.8 . . 0.5 64 3JHNHA 154 ASP H 154 ASP HA 8.5 . . 0.5 65 3JHNHA 155 ASN H 155 ASN HA 5.8 . . 0.5 66 3JHNHA 161 ASP H 161 ASP HA 3.0 . . 0.5 67 3JHNHA 162 GLU H 162 GLU HA 3.7 . . 0.5 68 3JHNHA 167 TRP H 167 TRP HA 3.6 . . 0.5 69 3JHNHA 168 LEU H 168 LEU HA 2.7 . . 0.5 70 3JHNHA 170 GLN H 170 GLN HA 5.5 . . 0.5 71 3JHNHA 171 ILE H 171 ILE HA 8.3 . . 0.5 72 3JHNHA 172 ALA H 172 ALA HA 0.4 . . 0.5 73 3JHNHA 174 GLU H 174 GLU HA 7.7 . . 0.5 74 3JHNHA 177 LEU H 177 LEU HA 8.9 . . 0.5 75 3JHNHA 178 SER H 178 SER HA 8.8 . . 0.5 76 3JHNHA 179 LEU H 179 LEU HA 9.5 . . 0.5 stop_ save_