data_5480 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; 1H,15N and 13C assigned Chemical Shifts for a complex of calmodulin with a peptide of the olfactory CNGC channel ; _BMRB_accession_number 5480 _BMRB_flat_file_name bmr5480.str _Entry_type original _Submission_date 2002-07-25 _Accession_date 2002-07-25 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Orsale Maria . . 2 Melino Sonia . . 3 Torre Vincent . . 4 Motta Andrea . . 5 Paci Maurizio . . 6 Desideri Alessandro . . 7 Cicero Daniel . . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 2 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 963 "13C chemical shifts" 664 "15N chemical shifts" 157 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2003-12-08 original author . stop_ _Original_release_date 2003-12-08 save_ ############################# # Citation for this entry # ############################# save_entry_citation _Saveframe_category entry_citation _Citation_full . _Citation_title ; Two distinct calcium-calmodulin interactions with N-terminal regions of the olfactory and rod cyclic nucleotide-gated channels characterized by NMR spectroscopy ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 12885399 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Orsale Maria . . 2 Melino Sonia . . 3 Contessa G. M. . 4 Torre Vincent . . 5 Andreotti G. . . 6 Motta Andrea . . 7 Paci Maurizio . . 8 Desideri Alessandro . . 9 Cicero Daniel . . stop_ _Journal_abbreviation 'FEBS Lett.' _Journal_volume 548 _Journal_issue 1-3 _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first 11 _Page_last 16 _Year 2003 _Details . save_ ####################################### # Cited references within the entry # ####################################### save_ref_1 _Saveframe_category citation _Citation_full ; Elshorst B, Hennig M, Forsterling H, Diener A, Maurer M, Schulte P, Schwalbe H, Griesinger C, Krebs J, Schmid H, Vorherr T, Carafoli E. NMR solution structure of a complex of calmodulin with a binding peptide of the Ca2+ pump. Biochemistry. 1999 Sep 21;38(38):12320-32. ; _Citation_title 'NMR solution structure of a complex of calmodulin with a binding peptide of the Ca2+ pump.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 10493800 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Elshorst B. . . 2 Hennig M. . . 3 Forsterling H. . . 4 Diener A. . . 5 Maurer M. . . 6 Schulte P. . . 7 Schwalbe H. . . 8 Griesinger C. . . 9 Krebs J. . . 10 Schmid H. . . 11 Vorherr T. . . 12 Carafoli E. . . stop_ _Journal_abbreviation Biochemistry _Journal_name_full Biochemistry _Journal_volume 38 _Journal_issue 38 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 12320 _Page_last 12332 _Year 1999 _Details ; The three-dimensional structure of the complex between calmodulin (CaM) and a peptide corresponding to the N-terminal portion of the CaM-binding domain of the plasma membrane calcium pump, the peptide C20W, has been solved by heteronuclear three-dimensional nuclear magnetic resonance (NMR) spectroscopy. The structure calculation is based on a total of 1808 intramolecular NOEs and 49 intermolecular NOEs between the peptide C20W and calmodulin from heteronuclear-filtered NOESY spectra and a half-filtered experiment, respectively. Chemical shift differences between free Ca(2+)-saturated CaM and its complex with C20W as well as the structure calculation reveal that C20W binds solely to the C-terminal half of CaM. In addition, comparison of the methyl resonances of the nine assigned methionine residues of free Ca(2+)-saturated CaM with those of the CaM/C20W complex revealed a significant difference between the N-terminal and the C-terminal domain; i.e., resonances in the N-terminal domain of the complex were much more similar to those reported for free CaM in contrast to those in the C-terminal half which were significantly different not only from the resonances of free CaM but also from those reported for the CaM/M13 complex. As a consequence, the global structure of the CaM/C20W complex is unusual, i.e., different from other peptide calmodulin complexes, since we find no indication for a collapsed structure. The fine modulation in the peptide protein interface shows a number of differences to the CaM/M13 complex studied by Ikura et al. [Ikura, M., Clore, G. M., Gronenborn, A. M., Zhu, G., Klee, C. B., and Bax, A. (1992) Science 256, 632-638]. The unusual binding mode to only the C-terminal half of CaM is in agreement with the biochemical observation that the calcium pump can be activated by the C-terminal half of CaM alone [Guerini, D., Krebs, J., and Carafoli, E. (1984) J. Biol. Chem. 259, 15172-15177]. ; save_ save_ref_2 _Saveframe_category citation _Citation_full ; Zhang M, Tanaka T, Ikura M. Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Nat Struct Biol. 1995 Sep;2(9):758-67. ; _Citation_title 'Calcium-induced conformational transition revealed by the solution structure of apo calmodulin.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 7552747 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Zhang M. . . 2 Tanaka T. . . 3 Ikura M. . . stop_ _Journal_abbreviation 'Nat. Struct. Biol.' _Journal_name_full 'Nature structural biology' _Journal_volume 2 _Journal_issue 9 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 758 _Page_last 767 _Year 1995 _Details ; The solution structure of Ca(2+)-free calmodulin has been determined by NMR spectroscopy, and is compared to the previously reported structure of the Ca(2+)-saturated form. The removal of Ca2+ causes the interhelical angles of four EF-hand motifs to increase by 36 degrees-44 degrees. This leads to major changes in surface properties, including the closure of the deep hydrophobic cavity essential for target protein recognition. Concerted movements of helices A and D with respect to B and C, and of helices E and H with respect to F and G are likely responsible for the cooperative Ca(2+)-binding property observed between two adjacent EF-hand sites in the amino- and carboxy-terminal domains. ; save_ save_ref_3 _Saveframe_category citation _Citation_full ; Meador WE, Means AR, Quiocho FA. Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science. 1992 Aug 28;257(5074):1251-5. ; _Citation_title 'Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 1519061 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Meador W.E. E. . 2 Means A.R. R. . 3 Quiocho F.A. A. . stop_ _Journal_abbreviation Science _Journal_name_full 'Science (New York, N.Y.)' _Journal_volume 257 _Journal_issue 5074 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 1251 _Page_last 1255 _Year 1992 _Details ; The crystal structure of calcium-bound calmodulin (Ca(2+)-CaM) bound to a peptide analog of the CaM-binding region of chicken smooth muscle myosin light chain kinase has been determined and refined to a resolution of 2.4 angstroms (A). The structure is compact and has the shape of an ellipsoid (axial ratio approximately 2:1). The bound CaM forms a tunnel diagonal to its long axis that engulfs the helical peptide, with the hydrophobic regions of CaM melded into a single area that closely covers the hydrophobic side of the peptide. There is a remarkably high pseudo-twofold symmetry between the closely associated domains. The central helix of the native CaM is unwound and expanded into a bend between residues 73 and 77. About 185 contacts (less than 4 A) are formed between CaM and the peptide, with van der Waals contacts comprising approximately 80% of this total. ; save_ save_ref_4 _Saveframe_category citation _Citation_full ; Kuboniwa H, Tjandra N, Grzesiek S, Ren H, Klee CB, Bax A. Solution structure of calcium-free calmodulin. Nat Struct Biol. 1995 Sep;2(9):768-76. ; _Citation_title 'Solution structure of calcium-free calmodulin.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 7552748 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Kuboniwa H. . . 2 Tjandra N. . . 3 Grzesiek S. . . 4 Ren H. . . 5 Klee C.B. B. . 6 Bax A. . . stop_ _Journal_abbreviation 'Nat. Struct. Biol.' _Journal_name_full 'Nature structural biology' _Journal_volume 2 _Journal_issue 9 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 768 _Page_last 776 _Year 1995 _Details ; The three-dimensional structure of calmodulin in the absence of Ca2+ has been determined by three- and four-dimensional heteronuclear NMR experiments, including ROE, isotope-filtering combined with reverse labelling, and measurement of more than 700 three-bond J-couplings. In analogy with the Ca(2+)-ligated state of this protein, it consists of two small globular domains separated by a flexible linker, with no stable, direct contacts between the two domains. In the absence of Ca2+, the four helices in each of the two globular domains form a highly twisted bundle, capped by a short anti-parallel beta-sheet. This arrangement is qualitatively similar to that observed in the crystal structure of the Ca(2+)-free N-terminal domain of troponin C. ; save_ save_ref_5 _Saveframe_category citation _Citation_full ; Cook WJ, Walter LJ, Walter MR. Drug binding by calmodulin: crystal structure of a calmodulin-trifluoperazine complex. Biochemistry. 1994 Dec 27;33(51):15259-65. ; _Citation_title 'Drug binding by calmodulin: crystal structure of a calmodulin-trifluoperazine complex.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 7803388 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Cook W.J. J. . 2 Walter L.J. J. . 3 Walter M.R. R. . stop_ _Journal_abbreviation Biochemistry _Journal_name_full Biochemistry _Journal_volume 33 _Journal_issue 51 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 15259 _Page_last 15265 _Year 1994 _Details ; The crystal structure of calmodulin (CaM) bound to trifluoperazine (TFP) has been determined and refined to a resolution of 2.45 A. Only one TFP is bound to CaM, but that is sufficient to cause distortion of the central alpha-helix and juxtaposition of the N- and C-terminal domains similar to that seen in CaM-polypeptide complexes. The drug makes extensive contacts with residues in the C-terminal domain of CaM but only a few contacts with one residue in the N-terminal domain. The structure suggests that substrate binding to the C-terminal domain is sufficient to cause the conformational changes in calmodulin that lead to activation of its targets. ; save_ save_ref_6 _Saveframe_category citation _Citation_full ; Chattopadhyaya R, Meador WE, Means AR, Quiocho FA. Calmodulin structure refined at 1.7 A resolution. J Mol Biol. 1992 Dec 20;228(4):1177-92. ; _Citation_title 'Calmodulin structure refined at 1.7 A resolution.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 1474585 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Chattopadhyaya R. . . 2 Meador W.E. E. . 3 Means A.R. R. . 4 Quiocho F.A. A. . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of molecular biology' _Journal_volume 228 _Journal_issue 4 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 1177 _Page_last 1192 _Year 1992 _Details ; We have determined and refined the crystal structure of a recombinant calmodulin at 1.7 A resolution. The structure was determined by molecular replacement, using the 2.2 A published native bovine brain structure as the starting model. The final crystallographic R-factor, using 14,469 reflections in the 10.0 to 1.7 A range with structure factors exceeding 0.5 sigma, is 0.216. Bond lengths and bond angle distances have root-mean-square deviations from ideal values of 0.009 A and 0.032 A, respectively. The final model consists of 1279 non-hydrogen atoms, including four calcium ions, 1130 protein atoms, including three Asp118 side-chain atoms in double conformation, 139 water molecules and one ethanol molecule. The electron densities for residues 1 to 4 and 148 of calmodulin are poorly defined, and not included in our model, except for main-chain atoms of residue 4. The calmodulin structure from our crystals is very similar to the earlier 2.2 A structure described by Babu and coworkers with a root-mean-square deviation of 0.36 A. Calmodulin remains a dumb-bell-shaped molecule, with similar lobes and connected by a central alpha-helix. Each lobe contains three alpha-helices and two Ca2+ binding EF hand loops, with a short antiparallel beta-sheet between adjacent EF hand loops and one non-EF hand loop. There are some differences in the structure of the central helix. The crystal packing is extensively studied, and facile crystal growth along the z-axis of the triclinic crystals is explained. Herein, we describe hydrogen bonding in the various secondary structure elements and hydration of calmodulin. ; save_ save_ref_7 _Saveframe_category citation _Citation_full ; Vandonselaar M, Hickie RA, Quail JW, Delbaere LT. Trifluoperazine-induced conformational change in Ca(2+)-calmodulin. Nat Struct Biol. 1994 Nov;1(11):795-801. ; _Citation_title 'Trifluoperazine-induced conformational change in Ca(2+)-calmodulin.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 7634090 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Vandonselaar M. . . 2 Hickie R.A. A. . 3 Quail J.W. W. . 4 Delbaere L.T. T. . stop_ _Journal_abbreviation 'Nat. Struct. Biol.' _Journal_name_full 'Nature structural biology' _Journal_volume 1 _Journal_issue 11 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 795 _Page_last 801 _Year 1994 _Details ; Here we show that, as a consequence of binding the drug trifluoperazine, a major conformational movement occurs in Ca(2+)-calmodulin (CaM). The tertiary structure changes from an elongated dumb-bell, with exposed hydrophobic surfaces, to a compact globular form which can no longer interact with its target enzymes. It is likely that inactivation of Ca(2+)-CaM by trifluoperazine is due to this major tertiary-structural alteration in Ca(2+)-CaM, which is initiated and stabilized by drug binding. This conformational change is similar to that which occurs on the binding of Ca(2+)-CaM to target peptides. Two hydrophobic binding pockets, created by amino acid residues adjacent to Ca(2+)-coordinating residues, form the key recognition sites on Ca(2+)-CaM for both inhibitors and target enzymes. ; save_ save_ref_8 _Saveframe_category citation _Citation_full ; Wall ME, Clarage JB, Phillips GN. Motions of calmodulin characterized using both Bragg and diffuse X-ray scattering. Structure. 1997 Dec 15;5(12):1599-612. ; _Citation_title 'Motions of calmodulin characterized using both Bragg and diffuse X-ray scattering.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9438860 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Wall M.E. E. . 2 Clarage J.B. B. . 3 Phillips G.N. N. . stop_ _Journal_abbreviation Structure _Journal_name_full 'Structure (London, England : 1993)' _Journal_volume 5 _Journal_issue 12 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 1599 _Page_last 1612 _Year 1997 _Details ; BACKGROUND: Calmodulin is a calcium-activated regulatory protein which can bind to many different targets. The protein resembles a highly flexible dumbbell, and bends in the middle as it binds. This and other motions must be understood to formulate a realistic model of calmodulin function. RESULTS: Using the Bragg reflections from X-ray crystallography, a multiple-conformer refinement of a calmodulin-peptide complex shows anisotropic displacements, with high variations of dihedral angles in several nonhelical domains: the flexible linker; three of the four calcium-binding sites (including both of the N-terminal sites); and a turn connecting the C-terminal EF-hand calcium-binding domains. Three-dimensional maps of the large scale diffuse X-ray scattering data show isotropic liquid-like motions with an unusually small correlation length. Three-dimensional maps of the small scale diffuse streaks show highly coupled, anisotropic motions along the head-to-tail molecular packing direction in the unit cell. There is also weak coupling perpendicular to the head-to-tail packing direction, particularly across a cavity occupied by the disordered linker domain of the molecule. CONCLUSIONS: Together, the Bragg and diffuse scattering present a self-consistent description of the motions in the flexible linker of calmodulin. The other mobile regions of the protein are also of great interest. In particular, the high variations in the calcium-binding sites are likely to influence how strongly they bind ions. This is especially important in the N-terminal sites, which regulate the activity of the molecule. ; save_ save_ref_10 _Saveframe_category citation _Citation_full ; Osawa M, Swindells MB, Tanikawa J, Tanaka T, Mase T, Furuya T, Ikura M. Solution structure of calmodulin-W-7 complex: the basis of diversity in molecular recognition. J Mol Biol. 1998 Feb 13;276(1):165-76. ; _Citation_title 'Solution structure of calmodulin-W-7 complex: the basis of diversity in molecular recognition.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9514729 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Osawa M. . . 2 Swindells M.B. B. . 3 Tanikawa J. . . 4 Tanaka T. . . 5 Mase T. . . 6 Furuya T. . . 7 Ikura M. . . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of molecular biology' _Journal_volume 276 _Journal_issue 1 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 165 _Page_last 176 _Year 1998 _Details ; The solution structure of calcium-bound calmodulin (CaM) complexed with an antagonist, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), has been determined by multidimensional NMR spectroscopy. The structure consists of one molecule of W-7 binding to each of the two domains of CaM. In each domain, the W-7 chloronaphthalene ring interacts with four methionine methyl groups and other aliphatic or aromatic side-chains in a deep hydrophobic pocket, the site responsible for CaM binding to CaM-dependent enzymes such as myosin light chain kinases (MLCKs) and CaM kinase II. This competitive binding at the same site between W-7 and CaM-dependent enzymes suggests the mechanism by which W-7 inhibits CaM to activate the enzymes. The orientation of the W-7 naphthalene ring in the N-terminal pocket is rotated approximately 40 degrees with respect to that in the C-terminal pocket. The W-7 ring orientation differs significantly from the Trp800 indole ring of smooth muscle MLCK bound to the C-terminal pocket and the phenothiazine ring of trifluoperazine bound to the N or C-terminal pocket. These comparative structural analyses demonstrate that the two hydrophobic pockets of CaM can accommodate a variety of bulky aromatic rings, which provides a plausible structural basis for the diversity in CaM-mediated molecular recognition. ; save_ save_ref_11 _Saveframe_category citation _Citation_full ; Osawa M, Tokumitsu H, Swindells MB, Kurihara H, Orita M, Shibanuma T, Furuya T, Ikura M. A novel target recognition revealed by calmodulin in complex with Ca2+-calmodulin-dependent kinase kinase. Nat Struct Biol. 1999 Sep;6(9):819-24. ; _Citation_title 'A novel target recognition revealed by calmodulin in complex with Ca2+-calmodulin-dependent kinase kinase.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 10467092 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Osawa M. . . 2 Tokumitsu H. . . 3 Swindells M.B. B. . 4 Kurihara H. . . 5 Orita M. . . 6 Shibanuma T. . . 7 Furuya T. . . 8 Ikura M. . . stop_ _Journal_abbreviation 'Nat. Struct. Biol.' _Journal_name_full 'Nature structural biology' _Journal_volume 6 _Journal_issue 9 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 819 _Page_last 824 _Year 1999 _Details ; The structure of calcium-bound calmodulin (Ca2+/CaM) complexed with a 26-residue peptide, corresponding to the CaM-binding domain of rat Ca2+/CaM-dependent protein kinase kinase (CaMKK), has been determined by NMR spectroscopy. In this complex, the CaMKK peptide forms a fold comprising an alpha-helix and a hairpin-like loop whose C-terminus folds back on itself. The binding orientation of this CaMKK peptide by the two CaM domains is opposite to that observed in all other CaM-target complexes determined so far. The N- and C-terminal hydrophobic pockets of Ca2+/CaM anchor Trp 444 and Phe 459 of the CaMKK peptide, respectively. This 14-residue separation between two key hydrophobic groups is also unique among previously determined CaM complexes. The present structure represents a new and distinct class of Ca2+/CaM target recognition that may be shared by other Ca2+/CaM-stimulated proteins. ; save_ save_ref_15 _Saveframe_category citation _Citation_full ; Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995 Nov;6(3):277-93. ; _Citation_title 'NMRPipe: a multidimensional spectral processing system based on UNIX pipes.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 8520220 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Delaglio F. . . 2 Grzesiek S. . . 3 Vuister G.W. W. . 4 Zhu G. . . 5 Pfeifer J. . . 6 Bax A. . . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 6 _Journal_issue 3 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 277 _Page_last 293 _Year 1995 _Details ; The NMRPipe system is a UNIX software environment of processing, graphics, and analysis tools designed to meet current routine and research-oriented multidimensional processing requirements, and to anticipate and accommodate future demands and developments. The system is based on UNIX pipes, which allow programs running simultaneously to exchange streams of data under user control. In an NMRPipe processing scheme, a stream of spectral data flows through a pipeline of processing programs, each of which performs one component of the overall scheme, such as Fourier transformation or linear prediction. Complete multidimensional processing schemes are constructed as simple UNIX shell scripts. The processing modules themselves maintain and exploit accurate records of data sizes, detection modes, and calibration information in all dimensions, so that schemes can be constructed without the need to explicitly define or anticipate data sizes or storage details of real and imaginary channels during processing. The asynchronous pipeline scheme provides other substantial advantages, including high flexibility, favorable processing speeds, choice of both all-in-memory and disk-bound processing, easy adaptation to different data formats, simpler software development and maintenance, and the ability to distribute processing tasks on multi-CPU computers and computer networks. ; save_ save_ref_16 _Saveframe_category citation _Citation_full ; Johnson, B. and Blevins R.A.(1994) J.Biomol.NMR, 4, 603-614 A computer program for the visualisation and analysis of NMR data. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ ################################## # Molecular system description # ################################## save_system_CaM-bOCNC_complex _Saveframe_category molecular_system _Mol_system_name 'Calmodulin-olfactory channel peptide complex' _Abbreviation_common 'CaM-bOCNC complex' _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label calmodulin $CaM 'olfactory channel peptide' $bOCNC 'Calcium ion, I' $CA 'Calcium ion, II' $CA 'Calcium ion, III' $CA 'Calcium ion, IV' $CA stop_ _System_molecular_weight . _System_physical_state native _System_oligomer_state monomer _System_paramagnetic no _System_thiol_state 'not present' _Database_query_date . _Details ; PDB 1CFF A Chain A,NMR solution structure of A complex of calmodulin with A Binding Peptide Of The Ca2+-Pump. PDB 1DMO Calmodulin, NMR ,30 structures. PDB 1CDL B Chain B, calmodulin complexed with calmodulin-binding peptide F. PDB 1CFC Calcium-free calmodulin. PDB 1CTR Calcium complexed with Trifluoperazine (1:1). PDB 1CLL Calmodulin (vertebrate). PDB 1LIN Calmodulin complexed with Trifluoperazine (1:4). PDB 1CM1 A Chain A,Motions of calmodulin-Single-conformer-refinement. PDB 1CM4 A Chain A,Motions of calmodulin-Four-conformer-refinement. PDB 1MUX Solution NMR structureof calmodulinW-7 Complex: the basis of diversity in molecular recognition, 30 structures. PDB 1CKK A chain A,calmodulinRAT Ca2+calmodulin dependent protein kinase fragment. PDB 1A29 Calmodulin Complexed With Trifluoperazine (1:2 Complex). PDB 1QIV A Chain A, Calmodulin Complexed With N-(3,3,-Diphenylpropyl)-N'- [1-R-( 3,4-Bis-Butoxyphenyl)-Ethyl]-Propylenediamine (Dpd), 1:2 Complex. PDB 1QIW A Chain A, Calmodulin Complexed With N-(3,3,-Diphenylpropyl)-N'- [1-R-( 3,4-Bis-Butoxyphenyl)-Ethyl]-Propylenediamine (Dpd). ; save_ ######################## # Monomeric polymers # ######################## save_CaM _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common Calmodulin _Abbreviation_common CaM _Molecular_mass 16700 _Mol_thiol_state 'not present' _Details . ############################## # Polymer residue sequence # ############################## _Residue_count 148 _Mol_residue_sequence ; ADQLTEEQIAEFKEAFSLFD KDGDGTITTKELGTVMRSLG QNPTEAELQDMINEVDADGN GTIDFPEFLTMMARKMKDTD SEEEIREAFRVFDKDGNGYI SAAELRHVMTNLGEKLTDEE VDEMIREADIDGDGQVNYEE FVQMMTAK ; loop_ _Residue_seq_code _Residue_label 1 ALA 2 ASP 3 GLN 4 LEU 5 THR 6 GLU 7 GLU 8 GLN 9 ILE 10 ALA 11 GLU 12 PHE 13 LYS 14 GLU 15 ALA 16 PHE 17 SER 18 LEU 19 PHE 20 ASP 21 LYS 22 ASP 23 GLY 24 ASP 25 GLY 26 THR 27 ILE 28 THR 29 THR 30 LYS 31 GLU 32 LEU 33 GLY 34 THR 35 VAL 36 MET 37 ARG 38 SER 39 LEU 40 GLY 41 GLN 42 ASN 43 PRO 44 THR 45 GLU 46 ALA 47 GLU 48 LEU 49 GLN 50 ASP 51 MET 52 ILE 53 ASN 54 GLU 55 VAL 56 ASP 57 ALA 58 ASP 59 GLY 60 ASN 61 GLY 62 THR 63 ILE 64 ASP 65 PHE 66 PRO 67 GLU 68 PHE 69 LEU 70 THR 71 MET 72 MET 73 ALA 74 ARG 75 LYS 76 MET 77 LYS 78 ASP 79 THR 80 ASP 81 SER 82 GLU 83 GLU 84 GLU 85 ILE 86 ARG 87 GLU 88 ALA 89 PHE 90 ARG 91 VAL 92 PHE 93 ASP 94 LYS 95 ASP 96 GLY 97 ASN 98 GLY 99 TYR 100 ILE 101 SER 102 ALA 103 ALA 104 GLU 105 LEU 106 ARG 107 HIS 108 VAL 109 MET 110 THR 111 ASN 112 LEU 113 GLY 114 GLU 115 LYS 116 LEU 117 THR 118 ASP 119 GLU 120 GLU 121 VAL 122 ASP 123 GLU 124 MET 125 ILE 126 ARG 127 GLU 128 ALA 129 ASP 130 ILE 131 ASP 132 GLY 133 ASP 134 GLY 135 GLN 136 VAL 137 ASN 138 TYR 139 GLU 140 GLU 141 PHE 142 VAL 143 GLN 144 MET 145 MET 146 THR 147 ALA 148 LYS stop_ _Sequence_homology_query_date . _Sequence_homology_query_revised_last_date 2015-01-28 loop_ _Database_name _Database_accession_code _Database_entry_mol_name _Sequence_query_to_submitted_percentage _Sequence_subject_length _Sequence_identity _Sequence_positive _Sequence_homology_expectation_value PDB 1SY9 "Structure Of Calmodulin Complexed With A Fragment Of The Olfactory Cng Channel" 100.00 26 100.00 100.00 1.62e-07 EMBL CAA38754 "cAMP-gated channel [Bos taurus]" 100.00 663 100.00 100.00 8.30e-09 PRF 1616224A "cAMP-gated channel" 100.00 663 100.00 100.00 8.30e-09 REF NP_001001139 "cyclic nucleotide-gated olfactory channel [Bos taurus]" 100.00 663 100.00 100.00 8.30e-09 REF XP_005227654 "PREDICTED: cyclic nucleotide-gated olfactory channel isoform X1 [Bos taurus]" 100.00 663 100.00 100.00 8.79e-09 REF XP_010841839 "PREDICTED: LOW QUALITY PROTEIN: cyclic nucleotide-gated olfactory channel [Bison bison bison]" 100.00 666 100.00 100.00 6.53e-09 SP Q03041 "RecName: Full=Cyclic nucleotide-gated olfactory channel; AltName: Full=Cyclic nucleotide-gated cation channel 2; AltName: Full=" 100.00 663 100.00 100.00 8.30e-09 TPG DAA13266 "TPA: cyclic nucleotide-gated olfactory channel [Bos taurus]" 100.00 663 100.00 100.00 8.79e-09 stop_ save_ save_bOCNC _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common 'olfactory channel peptide' _Abbreviation_common bOCNC _Molecular_mass 2900 _Mol_thiol_state 'not present' _Details . _Residue_count 26 _Mol_residue_sequence ; QQRRGGFRRIARLVGVLREW AYRNFR ; loop_ _Residue_seq_code _Residue_label 1 GLN 2 GLN 3 ARG 4 ARG 5 GLY 6 GLY 7 PHE 8 ARG 9 ARG 10 ILE 11 ALA 12 ARG 13 LEU 14 VAL 15 GLY 16 VAL 17 LEU 18 ARG 19 GLU 20 TRP 21 ALA 22 TYR 23 ARG 24 ASN 25 PHE 26 ARG stop_ _Sequence_homology_query_date 2008-08-19 _Sequence_homology_query_revised_last_date 2008-08-19 loop_ _Database_name _Database_accession_code _Database_entry_mol_name _Sequence_query_to_submitted_percentage _Sequence_subject_length _Sequence_identity _Sequence_positive _Sequence_homology_expectation_value SWISS-PROT Q03041 'Cyclic nucleotide-gated olfactory channel (Cyclic nucleotide-gated cation channel 2) (CNG channel alpha-2) (CNG-2) (CNG2)' 100.00 663 100.00 100.00 1.14e-07 REF NP_001001139 'cyclic nucleotide gated channel alpha 2 [Bos taurus]' 100.00 663 100.00 100.00 1.14e-07 PRF 1616224A 'cAMP-gated channel' 100.00 663 100.00 100.00 1.14e-07 EMBL CAA38754 'cAMP-gated channel [Bos taurus]' 100.00 663 100.00 100.00 1.14e-07 PDB 1SY9 'Structure Of Calmodulin Complexed With A Fragment Of The Olfactory Cng Channel' 100.00 26 100.00 100.00 2.83e-05 stop_ save_ ############# # Ligands # ############# save_CA _Saveframe_category ligand _Mol_type non-polymer _Name_common "CA (CALCIUM ION)" _BMRB_code . _PDB_code CA _Molecular_mass 40.078 _Mol_charge 2 _Mol_paramagnetic . _Mol_aromatic no _Details ; Information obtained from PDB's Chemical Component Dictionary at http://wwpdb-remediation.rutgers.edu/downloads.html Downloaded on Thu Jul 21 10:35:28 2011 ; loop_ _Atom_name _PDB_atom_name _Atom_type _Atom_chirality _Atom_charge _Atom_oxidation_number _Atom_unpaired_electrons CA CA CA . 2 . ? stop_ _Mol_thiol_state . _Sequence_homology_query_date . save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species $CaM 'African clawed frog' 8355 Eukaryota Metazoa . . $bOCNC . . . . . . stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_type _Vector_name $CaM 'recombinant technology' 'E. coli' . . AR58 plasmid Cam71-pTNco12 $bOCNC . . . . . . . stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_sample_1 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $CaM 1.2 mM '[U-95% 13C; U-95% 15N]' $bOCNC 1.2 mM . KCl 140 mM . CaCl2 7 mM . stop_ save_ save_sample_2 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $CaM 0.4 mM [U-15N] $bOCNC 0.4 mM . KCl 140 mM . CaCl2 7 mM . stop_ save_ ############################ # Computer software used # ############################ save_NMRPipe _Saveframe_category software _Name NMRPipe _Version 2 _Details ; A multidimensional spectral processing system based on UNIX pipes. Delaglio,F.,Grzesiek,S.,Vuister,G.W.,Zhu,G.,Pfeifer,J. and Bax,A.(1995) J.Biomol. NMR,6,277-293. ; save_ save_NMRView _Saveframe_category software _Name NMRView _Version 5 _Details ; A computer program for the visualisation and analysis of NMR data. Johnson,B. and Blevins,R.A. (1994) J.Biomol. NMR,4,603-614. ; save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_NMR_spectrometer _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model Avance _Field_strength 700 _Details . save_ ############################# # NMR applied experiments # ############################# save_1H-15N_HSQC_1 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N HSQC' _Sample_label . save_ save_15N_edited_TOCSY_(40ms)_2 _Saveframe_category NMR_applied_experiment _Experiment_name '15N edited TOCSY (40ms)' _Sample_label . save_ save_15N_edited_NOESY_(80ms)_3 _Saveframe_category NMR_applied_experiment _Experiment_name '15N edited NOESY (80ms)' _Sample_label . save_ save_HNHA_4 _Saveframe_category NMR_applied_experiment _Experiment_name HNHA _Sample_label . save_ save_1H-15N_NOE_5 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N NOE' _Sample_label . save_ save_HNCA_6 _Saveframe_category NMR_applied_experiment _Experiment_name HNCA _Sample_label . save_ save_HN(CO)CA_7 _Saveframe_category NMR_applied_experiment _Experiment_name HN(CO)CA _Sample_label . save_ save_HNCO_8 _Saveframe_category NMR_applied_experiment _Experiment_name HNCO _Sample_label . save_ save_CBCA(CO)NH_9 _Saveframe_category NMR_applied_experiment _Experiment_name CBCA(CO)NH _Sample_label . save_ save_HBHA(CO)NH_10 _Saveframe_category NMR_applied_experiment _Experiment_name HBHA(CO)NH _Sample_label . save_ save_15N-filtered_TOCSY_(40_ms)_11 _Saveframe_category NMR_applied_experiment _Experiment_name '15N-filtered TOCSY (40 ms)' _Sample_label . save_ save_15N-filtered_TOCSY_(60_ms)_12 _Saveframe_category NMR_applied_experiment _Experiment_name '15N-filtered TOCSY (60 ms)' _Sample_label . save_ save_15N-13C_filtered_NOESY_(80ms)_13 _Saveframe_category NMR_applied_experiment _Experiment_name '15N-13C filtered NOESY (80ms)' _Sample_label . save_ save_NMR_spec_expt__0_1 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N HSQC' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_2 _Saveframe_category NMR_applied_experiment _Experiment_name '15N edited TOCSY (40ms)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_3 _Saveframe_category NMR_applied_experiment _Experiment_name '15N edited NOESY (80ms)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_4 _Saveframe_category NMR_applied_experiment _Experiment_name HNHA _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_5 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N NOE' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_6 _Saveframe_category NMR_applied_experiment _Experiment_name HNCA _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_7 _Saveframe_category NMR_applied_experiment _Experiment_name HN(CO)CA _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_8 _Saveframe_category NMR_applied_experiment _Experiment_name HNCO _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_9 _Saveframe_category NMR_applied_experiment _Experiment_name CBCA(CO)NH _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_10 _Saveframe_category NMR_applied_experiment _Experiment_name HBHA(CO)NH _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_11 _Saveframe_category NMR_applied_experiment _Experiment_name '15N-filtered TOCSY (40 ms)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_12 _Saveframe_category NMR_applied_experiment _Experiment_name '15N-filtered TOCSY (60 ms)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_13 _Saveframe_category NMR_applied_experiment _Experiment_name '15N-13C filtered NOESY (80ms)' _BMRB_pulse_sequence_accession_number . _Details . save_ ####################### # Sample conditions # ####################### save_Exp-cond_1 _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH 6.7 0.1 n/a temperature 308 1 K 'ionic strength' 0.15 0.02 M stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis _Indirect_shift_ratio DSS H 1 'methyl protons' ppm 0.0 internal direct . . . 1.0 DSS N 15 'methyl protons' ppm 0.0 . indirect . . . 0.101329118 DSS C 13 'methyl protons' ppm 0.0 . indirect . . . 0.251449530 stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_chemical_shift_1 _Saveframe_category assigned_chemical_shifts _Details . loop_ _Sample_label $sample_1 $sample_2 stop_ _Sample_conditions_label $Exp-cond_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name calmodulin _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 1 ALA CA C 51.920 0.10 1 2 . 1 ALA HA H 3.846 0.050 1 3 . 1 ALA CB C 20.143 0.10 1 4 . 1 ALA HB H 1.364 0.050 1 5 . 1 ALA C C 174.200 0.10 1 6 . 2 ASP N N 120.180 0.10 1 7 . 2 ASP H H 8.510 0.050 1 8 . 2 ASP CA C 54.570 0.10 1 9 . 2 ASP HA H 4.529 0.050 1 10 . 2 ASP CB C 41.350 0.10 1 11 . 2 ASP HB3 H 2.473 0.050 2 12 . 2 ASP HB2 H 2.600 0.050 2 13 . 2 ASP CG C 180.100 0.10 1 14 . 2 ASP C C 175.600 0.10 1 15 . 3 GLN N N 119.700 0.10 1 16 . 3 GLN H H 8.268 0.050 1 17 . 3 GLN CA C 55.430 0.10 1 18 . 3 GLN HA H 4.285 0.050 1 19 . 3 GLN CB C 29.590 0.10 1 20 . 3 GLN HB3 H 1.906 0.050 2 21 . 3 GLN HB2 H 2.021 0.050 2 22 . 3 GLN CG C 33.640 0.10 1 23 . 3 GLN HG3 H 2.279 0.050 1 24 . 3 GLN HG2 H 2.279 0.050 1 25 . 3 GLN CD C 180.800 0.10 1 26 . 3 GLN NE2 N 111.810 0.10 1 27 . 3 GLN HE21 H 7.404 0.050 2 28 . 3 GLN HE22 H 6.713 0.050 2 29 . 3 GLN C C 175.600 0.10 1 30 . 4 LEU N N 122.920 0.10 1 31 . 4 LEU H H 8.178 0.050 1 32 . 4 LEU CA C 54.254 0.10 1 33 . 4 LEU HA H 4.613 0.050 1 34 . 4 LEU CB C 43.523 0.10 1 35 . 4 LEU HB3 H 1.421 0.050 2 36 . 4 LEU HB2 H 1.649 0.050 2 37 . 4 LEU CG C 27.130 0.10 1 38 . 4 LEU HG H 1.639 0.050 1 39 . 4 LEU CD1 C 26.720 0.10 1 40 . 4 LEU HD1 H 0.877 0.050 2 41 . 4 LEU CD2 C 23.743 0.10 1 42 . 4 LEU HD2 H 0.843 0.050 2 43 . 4 LEU C C 177.700 0.10 1 44 . 5 THR N N 112.560 0.10 1 45 . 5 THR H H 8.552 0.050 1 46 . 5 THR CA C 60.252 0.10 1 47 . 5 THR HA H 4.405 0.050 1 48 . 5 THR CB C 71.071 0.10 1 49 . 5 THR HB H 4.679 0.050 1 50 . 5 THR CG2 C 21.710 0.10 1 51 . 5 THR HG2 H 1.269 0.050 1 52 . 5 THR C C 175.500 0.10 1 53 . 6 GLU N N 120.070 0.10 1 54 . 6 GLU H H 8.909 0.050 1 55 . 6 GLU CA C 59.900 0.10 1 56 . 6 GLU HA H 3.900 0.050 1 57 . 6 GLU CB C 29.160 0.10 1 58 . 6 GLU HB3 H 1.987 0.050 1 59 . 6 GLU HB2 H 1.987 0.050 1 60 . 6 GLU CG C 36.150 0.10 1 61 . 6 GLU HG3 H 2.269 0.050 1 62 . 6 GLU HG2 H 2.269 0.050 1 63 . 6 GLU C C 178.800 0.10 1 64 . 7 GLU N N 118.950 0.10 1 65 . 7 GLU H H 8.500 0.050 1 66 . 7 GLU CA C 59.390 0.10 1 67 . 7 GLU HA H 3.979 0.050 1 68 . 7 GLU CB C 29.160 0.10 1 69 . 7 GLU HB3 H 2.103 0.050 1 70 . 7 GLU HB2 H 2.103 0.050 1 71 . 7 GLU CG C 36.543 0.10 1 72 . 7 GLU HG3 H 2.259 0.050 1 73 . 7 GLU HG2 H 2.259 0.050 1 74 . 7 GLU C C 179.270 0.10 1 75 . 8 GLN N N 119.690 0.10 1 76 . 8 GLN H H 7.598 0.050 1 77 . 8 GLN CA C 58.793 0.10 1 78 . 8 GLN HA H 3.703 0.050 1 79 . 8 GLN CB C 29.120 0.10 1 80 . 8 GLN HB3 H 2.247 0.050 2 81 . 8 GLN HB2 H 1.509 0.050 2 82 . 8 GLN CG C 34.820 0.10 1 83 . 8 GLN HG3 H 2.180 0.050 2 84 . 8 GLN HG2 H 2.242 0.050 2 85 . 8 GLN CD C 179.900 0.10 1 86 . 8 GLN NE2 N 110.720 0.10 1 87 . 8 GLN HE21 H 7.304 0.050 2 88 . 8 GLN HE22 H 6.660 0.050 2 89 . 8 GLN C C 177.900 0.10 1 90 . 9 ILE N N 118.746 0.10 1 91 . 9 ILE H H 8.211 0.050 1 92 . 9 ILE CA C 66.110 0.10 1 93 . 9 ILE HA H 3.541 0.050 1 94 . 9 ILE CB C 37.790 0.10 1 95 . 9 ILE HB H 1.847 0.050 1 96 . 9 ILE CG1 C 30.180 0.10 2 97 . 9 ILE HG13 H 1.711 0.050 1 98 . 9 ILE HG12 H 1.018 0.050 1 99 . 9 ILE CD1 C 12.869 0.10 1 100 . 9 ILE HD1 H 0.782 0.050 1 101 . 9 ILE CG2 C 17.386 0.10 1 102 . 9 ILE HG2 H 1.036 0.050 1 103 . 9 ILE C C 177.900 0.10 1 104 . 10 ALA N N 120.730 0.10 1 105 . 10 ALA H H 7.947 0.050 1 106 . 10 ALA CA C 55.300 0.10 1 107 . 10 ALA HA H 4.008 0.050 1 108 . 10 ALA CB C 17.770 0.10 1 109 . 10 ALA HB H 1.454 0.050 1 110 . 10 ALA C C 180.900 0.10 1 111 . 11 GLU N N 119.100 0.10 1 112 . 11 GLU H H 7.721 0.050 1 113 . 11 GLU CA C 59.300 0.10 1 114 . 11 GLU HA H 4.036 0.050 1 115 . 11 GLU CB C 29.309 0.10 1 116 . 11 GLU HB3 H 1.826 0.050 2 117 . 11 GLU HB2 H 2.006 0.050 2 118 . 11 GLU CG C 36.190 0.10 1 119 . 11 GLU HG3 H 2.097 0.050 2 120 . 11 GLU HG2 H 2.285 0.050 2 121 . 11 GLU CD C 183.300 0.10 1 122 . 11 GLU C C 180.100 0.10 1 123 . 12 PHE N N 119.510 0.10 1 124 . 12 PHE H H 8.469 0.050 1 125 . 12 PHE CA C 58.570 0.10 1 126 . 12 PHE HA H 4.955 0.050 1 127 . 12 PHE CB C 37.026 0.10 1 128 . 12 PHE HB3 H 3.483 0.050 2 129 . 12 PHE HB2 H 3.376 0.050 2 130 . 12 PHE CD1 C 130.070 0.10 1 131 . 12 PHE HD1 H 7.074 0.050 1 132 . 12 PHE CE1 C 131.260 0.10 1 133 . 12 PHE HE1 H 7.197 0.050 1 134 . 12 PHE CZ C 129.470 0.10 1 135 . 12 PHE HZ H 7.160 0.050 1 136 . 12 PHE CE2 C 131.260 0.10 1 137 . 12 PHE HE2 H 7.197 0.050 1 138 . 12 PHE CD2 C 130.070 0.10 1 139 . 12 PHE HD2 H 7.074 0.050 1 140 . 12 PHE C C 178.900 0.10 1 141 . 13 LYS N N 123.357 0.10 1 142 . 13 LYS H H 9.173 0.050 1 143 . 13 LYS CA C 60.000 0.10 1 144 . 13 LYS HA H 3.981 0.050 1 145 . 13 LYS CB C 31.800 0.10 1 146 . 13 LYS HB3 H 1.861 0.050 1 147 . 13 LYS HB2 H 1.861 0.050 1 148 . 13 LYS CG C 25.520 0.10 1 149 . 13 LYS HG3 H 1.139 0.050 2 150 . 13 LYS HG2 H 0.977 0.050 2 151 . 13 LYS CD C 28.641 0.10 1 152 . 13 LYS HD3 H 1.159 0.050 2 153 . 13 LYS HD2 H 1.298 0.050 2 154 . 13 LYS CE C 41.557 0.10 1 155 . 13 LYS HE3 H 2.515 0.050 1 156 . 13 LYS HE2 H 2.515 0.050 1 157 . 13 LYS C C 179.300 0.10 1 158 . 14 GLU N N 119.990 0.10 1 159 . 14 GLU H H 7.850 0.050 1 160 . 14 GLU CA C 59.300 0.10 1 161 . 14 GLU HA H 4.100 0.050 1 162 . 14 GLU CB C 29.188 0.10 1 163 . 14 GLU HB3 H 2.130 0.050 1 164 . 14 GLU HB2 H 2.130 0.050 1 165 . 14 GLU CG C 36.160 0.10 1 166 . 14 GLU HG3 H 2.270 0.050 2 167 . 14 GLU HG2 H 2.334 0.050 2 168 . 14 GLU C C 179.800 0.10 1 169 . 15 ALA N N 121.080 0.10 1 170 . 15 ALA H H 7.950 0.050 1 171 . 15 ALA CA C 55.200 0.10 1 172 . 15 ALA HA H 4.193 0.050 1 173 . 15 ALA CB C 18.100 0.10 1 174 . 15 ALA HB H 1.975 0.050 1 175 . 15 ALA C C 178.500 0.10 1 176 . 16 PHE N N 118.300 0.10 1 177 . 16 PHE H H 8.687 0.050 1 178 . 16 PHE CA C 62.100 0.10 1 179 . 16 PHE HA H 3.257 0.050 1 180 . 16 PHE CB C 39.150 0.10 1 181 . 16 PHE HB3 H 2.809 0.050 2 182 . 16 PHE HB2 H 3.204 0.050 2 183 . 16 PHE CD1 C 131.760 0.10 1 184 . 16 PHE HD1 H 6.548 0.050 1 185 . 16 PHE CE1 C 131.280 0.10 1 186 . 16 PHE HE1 H 7.107 0.050 1 187 . 16 PHE HZ H 7.120 0.050 1 188 . 16 PHE CE2 C 131.280 0.10 1 189 . 16 PHE HE2 H 7.107 0.050 1 190 . 16 PHE CD2 C 131.760 0.10 1 191 . 16 PHE HD2 H 6.548 0.050 1 192 . 16 PHE C C 177.900 0.10 1 193 . 17 SER N N 112.930 0.10 1 194 . 17 SER H H 8.048 0.050 1 195 . 17 SER CA C 61.400 0.10 1 196 . 17 SER HA H 4.068 0.050 1 197 . 17 SER CB C 63.210 0.10 1 198 . 17 SER HB3 H 3.982 0.050 1 199 . 17 SER HB2 H 3.982 0.050 1 200 . 17 SER C C 174.650 0.10 1 201 . 18 LEU N N 119.710 0.10 1 202 . 18 LEU H H 7.345 0.050 1 203 . 18 LEU CA C 57.180 0.10 1 204 . 18 LEU HA H 3.946 0.050 1 205 . 18 LEU CB C 41.640 0.10 1 206 . 18 LEU HB3 H 1.389 0.050 2 207 . 18 LEU HB2 H 1.782 0.050 2 208 . 18 LEU CG C 26.690 0.10 1 209 . 18 LEU HG H 1.634 0.050 1 210 . 18 LEU CD1 C 23.860 0.10 1 211 . 18 LEU HD1 H 0.623 0.050 2 212 . 18 LEU CD2 C 25.334 0.10 1 213 . 18 LEU HD2 H 0.783 0.050 2 214 . 18 LEU C C 177.380 0.10 1 215 . 19 PHE N N 112.670 0.10 1 216 . 19 PHE H H 7.104 0.050 1 217 . 19 PHE CA C 58.800 0.10 1 218 . 19 PHE HA H 4.150 0.050 1 219 . 19 PHE CB C 41.700 0.10 1 220 . 19 PHE HB3 H 2.593 0.050 2 221 . 19 PHE HB2 H 2.723 0.050 2 222 . 19 PHE CD1 C 130.510 0.10 1 223 . 19 PHE HD1 H 7.354 0.050 1 224 . 19 PHE CE1 C 132.480 0.10 1 225 . 19 PHE HE1 H 7.374 0.050 1 226 . 19 PHE CZ C 128.390 0.10 1 227 . 19 PHE HZ H 7.311 0.050 1 228 . 19 PHE CE2 C 132.480 0.10 1 229 . 19 PHE HE2 H 7.374 0.050 1 230 . 19 PHE CD2 C 130.510 0.10 1 231 . 19 PHE HD2 H 7.354 0.050 1 232 . 19 PHE C C 177.100 0.10 1 233 . 20 ASP N N 116.370 0.10 1 234 . 20 ASP H H 7.657 0.050 1 235 . 20 ASP CA C 52.597 0.10 1 236 . 20 ASP HA H 4.541 0.050 1 237 . 20 ASP CB C 39.237 0.10 1 238 . 20 ASP HB3 H 1.462 0.050 2 239 . 20 ASP HB2 H 2.287 0.050 2 240 . 20 ASP CG C 179.000 0.10 1 241 . 20 ASP C C 177.100 0.10 1 242 . 21 LYS N N 124.048 0.10 1 243 . 21 LYS H H 7.759 0.050 1 244 . 21 LYS CA C 57.750 0.10 1 245 . 21 LYS HA H 3.952 0.050 1 246 . 21 LYS CB C 32.510 0.10 1 247 . 21 LYS HB3 H 1.852 0.050 1 248 . 21 LYS HB2 H 1.852 0.050 1 249 . 21 LYS CG C 24.300 0.10 1 250 . 21 LYS HG3 H 1.435 0.050 2 251 . 21 LYS HG2 H 1.534 0.050 2 252 . 21 LYS CD C 28.030 0.10 1 253 . 21 LYS HD3 H 1.633 0.050 1 254 . 21 LYS HD2 H 1.633 0.050 1 255 . 21 LYS CE C 42.030 0.10 1 256 . 21 LYS HE3 H 2.974 0.050 1 257 . 21 LYS HE2 H 2.974 0.050 1 258 . 21 LYS C C 178.300 0.10 1 259 . 22 ASP N N 113.695 0.10 1 260 . 22 ASP H H 7.975 0.050 1 261 . 22 ASP CA C 52.760 0.10 1 262 . 22 ASP HA H 4.553 0.050 1 263 . 22 ASP CB C 39.800 0.10 1 264 . 22 ASP HB3 H 2.587 0.050 2 265 . 22 ASP HB2 H 3.023 0.050 2 266 . 22 ASP CG C 180.900 0.10 1 267 . 22 ASP C C 177.700 0.10 1 268 . 23 GLY N N 108.780 0.10 1 269 . 23 GLY H H 7.590 0.050 1 270 . 23 GLY CA C 47.030 0.10 1 271 . 23 GLY HA3 H 3.800 0.050 1 272 . 23 GLY HA2 H 3.800 0.050 1 273 . 23 GLY C C 175.200 0.10 1 274 . 24 ASP N N 120.410 0.10 1 275 . 24 ASP H H 8.384 0.050 1 276 . 24 ASP CA C 53.500 0.10 1 277 . 24 ASP HA H 4.460 0.050 1 278 . 24 ASP CB C 40.320 0.10 1 279 . 24 ASP HB3 H 2.990 0.050 2 280 . 24 ASP HB2 H 2.390 0.050 2 281 . 24 ASP CG C 182.100 0.10 1 282 . 24 ASP C C 177.500 0.10 1 283 . 25 GLY N N 112.420 0.10 1 284 . 25 GLY H H 10.494 0.050 1 285 . 25 GLY CA C 45.250 0.10 1 286 . 25 GLY HA3 H 4.290 0.050 2 287 . 25 GLY HA2 H 3.650 0.050 2 288 . 25 GLY C C 173.900 0.10 1 289 . 26 THR N N 111.830 0.10 1 290 . 26 THR H H 8.144 0.050 1 291 . 26 THR CA C 59.630 0.10 1 292 . 26 THR HA H 5.370 0.050 1 293 . 26 THR CB C 72.620 0.10 1 294 . 26 THR HB H 3.780 0.050 1 295 . 26 THR CG2 C 21.800 0.10 1 296 . 26 THR HG2 H 0.990 0.050 1 297 . 26 THR C C 173.200 0.10 1 298 . 27 ILE N N 126.016 0.10 1 299 . 27 ILE H H 9.801 0.050 1 300 . 27 ILE CA C 60.900 0.10 1 301 . 27 ILE HA H 4.820 0.050 1 302 . 27 ILE CB C 39.904 0.10 1 303 . 27 ILE HB H 1.716 0.050 1 304 . 27 ILE CG1 C 26.670 0.10 2 305 . 27 ILE HG13 H 1.208 0.050 1 306 . 27 ILE HG12 H 0.161 0.050 1 307 . 27 ILE CD1 C 15.250 0.10 1 308 . 27 ILE HD1 H 0.170 0.050 1 309 . 27 ILE CG2 C 17.500 0.10 1 310 . 27 ILE HG2 H 0.900 0.050 1 311 . 27 ILE C C 176.200 0.10 1 312 . 28 THR N N 115.980 0.10 1 313 . 28 THR H H 8.304 0.050 1 314 . 28 THR CA C 59.300 0.10 1 315 . 28 THR HA H 4.810 0.050 1 316 . 28 THR CB C 72.454 0.10 1 317 . 28 THR HB H 4.739 0.050 1 318 . 28 THR CG2 C 21.800 0.10 1 319 . 28 THR HG2 H 1.217 0.050 1 320 . 28 THR C C 176.800 0.10 1 321 . 29 THR N N 112.120 0.10 1 322 . 29 THR H H 9.043 0.050 1 323 . 29 THR CA C 66.200 0.10 1 324 . 29 THR HA H 3.676 0.050 1 325 . 29 THR CB C 67.770 0.10 1 326 . 29 THR HB H 4.123 0.050 1 327 . 29 THR CG2 C 23.270 0.10 1 328 . 29 THR HG2 H 1.205 0.050 1 329 . 29 THR C C 177.300 0.10 1 330 . 30 LYS N N 120.400 0.10 1 331 . 30 LYS H H 7.530 0.050 1 332 . 30 LYS CA C 59.000 0.10 1 333 . 30 LYS HA H 4.040 0.050 1 334 . 30 LYS CB C 32.430 0.10 1 335 . 30 LYS HB3 H 1.744 0.050 2 336 . 30 LYS HB2 H 1.806 0.050 2 337 . 30 LYS CG C 24.780 0.10 1 338 . 30 LYS HG3 H 1.320 0.050 2 339 . 30 LYS HG2 H 1.426 0.050 2 340 . 30 LYS CD C 28.910 0.10 1 341 . 30 LYS HD3 H 1.632 0.050 1 342 . 30 LYS HD2 H 1.632 0.050 1 343 . 30 LYS CE C 41.850 0.10 1 344 . 30 LYS HE3 H 2.934 0.050 1 345 . 30 LYS HE2 H 2.934 0.050 1 346 . 30 LYS C C 180.000 0.10 1 347 . 31 GLU N N 121.400 0.10 1 348 . 31 GLU H H 7.627 0.050 1 349 . 31 GLU CA C 59.300 0.10 1 350 . 31 GLU HA H 3.990 0.050 1 351 . 31 GLU CB C 28.330 0.10 1 352 . 31 GLU HB3 H 2.340 0.050 2 353 . 31 GLU HB2 H 2.260 0.050 2 354 . 31 GLU CG C 37.100 0.10 1 355 . 31 GLU HG3 H 2.300 0.050 1 356 . 31 GLU HG2 H 2.300 0.050 1 357 . 31 GLU C C 179.600 0.10 1 358 . 32 LEU N N 120.300 0.10 1 359 . 32 LEU H H 8.555 0.050 1 360 . 32 LEU CA C 58.190 0.10 1 361 . 32 LEU HA H 4.120 0.050 1 362 . 32 LEU CB C 42.540 0.10 1 363 . 32 LEU HB3 H 1.313 0.050 2 364 . 32 LEU HB2 H 1.796 0.050 2 365 . 32 LEU CD1 C 26.180 0.10 1 366 . 32 LEU HD1 H 0.461 0.050 2 367 . 32 LEU CD2 C 23.690 0.10 1 368 . 32 LEU HD2 H 0.609 0.050 2 369 . 32 LEU C C 178.900 0.10 1 370 . 33 GLY N N 105.190 0.10 1 371 . 33 GLY H H 8.659 0.050 1 372 . 33 GLY CA C 48.220 0.10 1 373 . 33 GLY HA3 H 3.870 0.050 2 374 . 33 GLY HA2 H 3.468 0.050 2 375 . 33 GLY C C 175.100 0.10 1 376 . 34 THR N N 117.670 0.10 1 377 . 34 THR H H 7.894 0.050 1 378 . 34 THR CA C 66.880 0.10 1 379 . 34 THR HA H 3.870 0.050 1 380 . 34 THR CB C 68.600 0.10 1 381 . 34 THR HB H 4.320 0.050 1 382 . 34 THR CG2 C 21.300 0.10 1 383 . 34 THR HG2 H 1.236 0.050 1 384 . 34 THR C C 177.100 0.10 1 385 . 35 VAL N N 121.799 0.10 1 386 . 35 VAL H H 7.432 0.050 1 387 . 35 VAL CA C 66.680 0.10 1 388 . 35 VAL HA H 3.454 0.050 1 389 . 35 VAL CB C 31.300 0.10 1 390 . 35 VAL HB H 1.870 0.050 1 391 . 35 VAL CG2 C 20.960 0.10 1 392 . 35 VAL HG2 H 0.352 0.050 2 393 . 35 VAL CG1 C 23.110 0.10 1 394 . 35 VAL HG1 H 0.660 0.050 2 395 . 35 VAL C C 178.150 0.10 1 396 . 36 MET N N 116.570 0.10 1 397 . 36 MET H H 8.218 0.050 1 398 . 36 MET CA C 59.260 0.10 1 399 . 36 MET HA H 3.875 0.050 1 400 . 36 MET CB C 32.237 0.10 1 401 . 36 MET HB3 H 1.756 0.050 1 402 . 36 MET HB2 H 1.756 0.050 1 403 . 36 MET CG C 33.310 0.10 1 404 . 36 MET HG3 H 2.366 0.050 2 405 . 36 MET HG2 H 2.445 0.050 2 406 . 36 MET CE C 17.490 0.10 1 407 . 36 MET HE H 1.754 0.050 1 408 . 36 MET C C 179.100 0.10 1 409 . 37 ARG N N 118.300 0.10 1 410 . 37 ARG H H 8.479 0.050 1 411 . 37 ARG CA C 58.800 0.10 1 412 . 37 ARG HA H 4.660 0.050 1 413 . 37 ARG CB C 30.160 0.10 1 414 . 37 ARG HB3 H 1.800 0.050 2 415 . 37 ARG HB2 H 1.910 0.050 2 416 . 37 ARG CG C 29.360 0.10 1 417 . 37 ARG HG3 H 1.810 0.050 1 418 . 37 ARG HG2 H 1.810 0.050 1 419 . 37 ARG CD C 43.360 0.10 1 420 . 37 ARG HD3 H 3.234 0.050 2 421 . 37 ARG HD2 H 3.054 0.050 2 422 . 37 ARG C C 181.100 0.10 1 423 . 38 SER N N 118.000 0.10 1 424 . 38 SER H H 7.891 0.050 1 425 . 38 SER CA C 61.733 0.10 1 426 . 38 SER HA H 4.225 0.050 1 427 . 38 SER CB C 62.800 0.10 1 428 . 38 SER HB3 H 3.687 0.050 2 429 . 38 SER HB2 H 4.010 0.050 2 430 . 38 SER C C 174.600 0.10 1 431 . 39 LEU N N 118.630 0.10 1 432 . 39 LEU H H 7.238 0.050 1 433 . 39 LEU CA C 53.600 0.10 1 434 . 39 LEU HA H 4.300 0.050 1 435 . 39 LEU CB C 41.220 0.10 1 436 . 39 LEU HB3 H 1.732 0.050 2 437 . 39 LEU HB2 H 1.690 0.050 2 438 . 39 LEU CG C 26.250 0.10 1 439 . 39 LEU CD1 C 26.030 0.10 1 440 . 39 LEU HD1 H 0.690 0.050 2 441 . 39 LEU CD2 C 22.580 0.10 1 442 . 39 LEU HD2 H 0.612 0.050 2 443 . 39 LEU C C 176.600 0.10 1 444 . 40 GLY N N 105.510 0.10 1 445 . 40 GLY H H 7.645 0.050 1 446 . 40 GLY CA C 45.880 0.10 1 447 . 40 GLY HA3 H 4.091 0.050 2 448 . 40 GLY HA2 H 3.728 0.050 2 449 . 40 GLY C C 174.500 0.10 1 450 . 41 GLN N N 117.570 0.10 1 451 . 41 GLN H H 7.780 0.050 1 452 . 41 GLN CA C 53.800 0.10 1 453 . 41 GLN HA H 4.410 0.050 1 454 . 41 GLN CB C 30.740 0.10 1 455 . 41 GLN HB3 H 2.030 0.050 2 456 . 41 GLN HB2 H 1.540 0.050 2 457 . 41 GLN CG C 33.640 0.10 1 458 . 41 GLN HG3 H 2.150 0.050 2 459 . 41 GLN HG2 H 2.004 0.050 2 460 . 41 GLN CD C 178.600 0.10 1 461 . 41 GLN NE2 N 110.510 0.10 1 462 . 41 GLN HE21 H 7.189 0.050 2 463 . 41 GLN HE22 H 6.372 0.050 2 464 . 41 GLN C C 174.100 0.10 1 465 . 42 ASN N N 116.130 0.10 1 466 . 42 ASN H H 8.554 0.050 1 467 . 42 ASN CA C 51.170 0.10 1 468 . 42 ASN HA H 5.122 0.050 1 469 . 42 ASN CB C 39.074 0.10 1 470 . 42 ASN HB3 H 2.430 0.050 2 471 . 42 ASN HB2 H 2.700 0.050 2 472 . 42 ASN CG C 178.200 0.10 1 473 . 42 ASN ND2 N 111.600 0.10 1 474 . 42 ASN HD21 H 7.378 0.050 2 475 . 42 ASN HD22 H 6.591 0.050 2 476 . 42 ASN C C 171.900 0.10 1 477 . 43 PRO CA C 62.200 0.10 1 478 . 43 PRO HA H 4.680 0.050 1 479 . 43 PRO CB C 32.130 0.10 1 480 . 43 PRO HB3 H 2.000 0.050 2 481 . 43 PRO HB2 H 1.860 0.050 2 482 . 43 PRO CG C 27.300 0.10 1 483 . 43 PRO HG3 H 1.840 0.050 1 484 . 43 PRO HG2 H 1.840 0.050 1 485 . 43 PRO CD C 49.800 0.10 1 486 . 43 PRO HD3 H 3.170 0.050 2 487 . 43 PRO HD2 H 3.520 0.050 2 488 . 43 PRO C C 177.500 0.10 1 489 . 44 THR N N 112.210 0.10 1 490 . 44 THR H H 8.634 0.050 1 491 . 44 THR CA C 60.420 0.10 1 492 . 44 THR HA H 4.364 0.050 1 493 . 44 THR CB C 70.814 0.10 1 494 . 44 THR HB H 4.620 0.050 1 495 . 44 THR CG2 C 21.680 0.10 1 496 . 44 THR HG2 H 1.246 0.050 1 497 . 44 THR C C 175.200 0.10 1 498 . 45 GLU N N 120.170 0.10 1 499 . 45 GLU H H 8.667 0.050 1 500 . 45 GLU CA C 59.810 0.10 1 501 . 45 GLU HA H 3.880 0.050 1 502 . 45 GLU CB C 29.075 0.10 1 503 . 45 GLU HB3 H 1.974 0.050 1 504 . 45 GLU HB2 H 1.974 0.050 1 505 . 45 GLU CG C 36.100 0.10 1 506 . 45 GLU HG3 H 2.270 0.050 1 507 . 45 GLU HG2 H 2.270 0.050 1 508 . 45 GLU C C 178.900 0.10 1 509 . 46 ALA N N 120.150 0.10 1 510 . 46 ALA H H 8.109 0.050 1 511 . 46 ALA CA C 54.890 0.10 1 512 . 46 ALA HA H 4.024 0.050 1 513 . 46 ALA CB C 18.100 0.10 1 514 . 46 ALA HB H 1.320 0.050 1 515 . 46 ALA C C 180.300 0.10 1 516 . 47 GLU N N 118.180 0.10 1 517 . 47 GLU H H 7.469 0.050 1 518 . 47 GLU CA C 58.880 0.10 1 519 . 47 GLU HA H 3.972 0.050 1 520 . 47 GLU CB C 29.100 0.10 1 521 . 47 GLU HB3 H 2.196 0.050 2 522 . 47 GLU HB2 H 1.800 0.050 2 523 . 47 GLU CG C 37.340 0.10 1 524 . 47 GLU HG3 H 2.210 0.050 1 525 . 47 GLU HG2 H 2.210 0.050 1 526 . 47 GLU C C 179.500 0.10 1 527 . 48 LEU N N 118.720 0.10 1 528 . 48 LEU H H 7.930 0.050 1 529 . 48 LEU CA C 57.500 0.10 1 530 . 48 LEU HA H 3.870 0.050 1 531 . 48 LEU CB C 42.508 0.10 1 532 . 48 LEU HB3 H 1.058 0.050 2 533 . 48 LEU HB2 H 1.964 0.050 2 534 . 48 LEU CG C 26.560 0.10 1 535 . 48 LEU HG H 1.730 0.050 1 536 . 48 LEU CD1 C 25.920 0.10 1 537 . 48 LEU HD1 H 0.746 0.050 2 538 . 48 LEU CD2 C 26.130 0.10 1 539 . 48 LEU HD2 H 0.780 0.050 2 540 . 48 LEU C C 178.800 0.10 1 541 . 49 GLN N N 117.740 0.10 1 542 . 49 GLN H H 8.109 0.050 1 543 . 49 GLN CA C 58.500 0.10 1 544 . 49 GLN HA H 3.720 0.050 1 545 . 49 GLN CB C 28.130 0.10 1 546 . 49 GLN HB3 H 2.098 0.050 2 547 . 49 GLN HB2 H 2.141 0.050 2 548 . 49 GLN CG C 34.100 0.10 1 549 . 49 GLN HG3 H 2.354 0.050 2 550 . 49 GLN HG2 H 2.411 0.050 2 551 . 49 GLN CD C 180.300 0.10 1 552 . 49 GLN NE2 N 112.280 0.10 1 553 . 49 GLN HE21 H 7.391 0.050 2 554 . 49 GLN HE22 H 6.776 0.050 2 555 . 49 GLN C C 178.500 0.10 1 556 . 50 ASP N N 120.180 0.10 1 557 . 50 ASP H H 7.965 0.050 1 558 . 50 ASP CA C 57.580 0.10 1 559 . 50 ASP HA H 4.361 0.050 1 560 . 50 ASP CB C 40.192 0.10 1 561 . 50 ASP HB3 H 2.659 0.050 2 562 . 50 ASP HB2 H 2.758 0.050 2 563 . 50 ASP CG C 179.300 0.10 1 564 . 50 ASP C C 179.000 0.10 1 565 . 51 MET N N 119.400 0.10 1 566 . 51 MET H H 7.882 0.050 1 567 . 51 MET CA C 59.950 0.10 1 568 . 51 MET HA H 3.880 0.050 1 569 . 51 MET CB C 33.070 0.10 1 570 . 51 MET HB3 H 2.000 0.050 1 571 . 51 MET HB2 H 2.000 0.050 1 572 . 51 MET CG C 32.660 0.10 1 573 . 51 MET HG3 H 2.464 0.050 1 574 . 51 MET HG2 H 2.464 0.050 1 575 . 51 MET CE C 16.630 0.10 1 576 . 51 MET HE H 1.802 0.050 1 577 . 51 MET C C 179.400 0.10 1 578 . 52 ILE N N 118.190 0.10 1 579 . 52 ILE H H 7.786 0.050 1 580 . 52 ILE CA C 64.720 0.10 1 581 . 52 ILE HA H 3.696 0.050 1 582 . 52 ILE CB C 36.540 0.10 1 583 . 52 ILE HB H 1.977 0.050 1 584 . 52 ILE CG1 C 28.970 0.10 2 585 . 52 ILE HG13 H 1.580 0.050 1 586 . 52 ILE HG12 H 1.175 0.050 1 587 . 52 ILE CD1 C 12.110 0.10 1 588 . 52 ILE HD1 H 0.660 0.050 1 589 . 52 ILE CG2 C 16.250 0.10 1 590 . 52 ILE HG2 H 0.713 0.050 1 591 . 52 ILE C C 178.100 0.10 1 592 . 53 ASN N N 117.580 0.10 1 593 . 53 ASN H H 8.672 0.050 1 594 . 53 ASN CA C 55.800 0.10 1 595 . 53 ASN HA H 4.370 0.050 1 596 . 53 ASN CB C 37.990 0.10 1 597 . 53 ASN HB3 H 2.990 0.050 2 598 . 53 ASN HB2 H 2.850 0.050 2 599 . 53 ASN CG C 176.500 0.10 1 600 . 53 ASN ND2 N 111.050 0.10 1 601 . 53 ASN HD21 H 7.745 0.050 2 602 . 53 ASN HD22 H 6.842 0.050 2 603 . 53 ASN C C 177.000 0.10 1 604 . 54 GLU N N 116.065 0.10 1 605 . 54 GLU H H 7.585 0.050 1 606 . 54 GLU CA C 58.977 0.10 1 607 . 54 GLU HA H 4.027 0.050 1 608 . 54 GLU CB C 30.500 0.10 1 609 . 54 GLU HB3 H 2.300 0.050 2 610 . 54 GLU HB2 H 2.200 0.050 2 611 . 54 GLU CG C 36.190 0.10 1 612 . 54 GLU HG3 H 2.423 0.050 1 613 . 54 GLU HG2 H 2.423 0.050 1 614 . 54 GLU C C 177.400 0.10 1 615 . 55 VAL N N 110.470 0.10 1 616 . 55 VAL H H 7.153 0.050 1 617 . 55 VAL CA C 60.650 0.10 1 618 . 55 VAL HA H 4.235 0.050 1 619 . 55 VAL CB C 33.034 0.10 1 620 . 55 VAL HB H 2.120 0.050 1 621 . 55 VAL CG2 C 20.760 0.10 1 622 . 55 VAL HG2 H 0.840 0.050 2 623 . 55 VAL CG1 C 22.150 0.10 1 624 . 55 VAL HG1 H 0.713 0.050 2 625 . 55 VAL C C 175.500 0.10 1 626 . 56 ASP N N 121.218 0.10 1 627 . 56 ASP H H 7.698 0.050 1 628 . 56 ASP CA C 53.704 0.10 1 629 . 56 ASP HA H 4.505 0.050 1 630 . 56 ASP CB C 40.600 0.10 1 631 . 56 ASP HB3 H 2.710 0.050 2 632 . 56 ASP HB2 H 2.490 0.050 2 633 . 56 ASP CG C 178.600 0.10 1 634 . 56 ASP C C 176.000 0.10 1 635 . 57 ALA N N 131.060 0.10 1 636 . 57 ALA H H 8.094 0.050 1 637 . 57 ALA CA C 54.200 0.10 1 638 . 57 ALA HA H 4.150 0.050 1 639 . 57 ALA CB C 19.600 0.10 1 640 . 57 ALA HB H 1.475 0.050 1 641 . 57 ALA C C 178.800 0.10 1 642 . 58 ASP N N 113.560 0.10 1 643 . 58 ASP H H 8.182 0.050 1 644 . 58 ASP CA C 52.790 0.10 1 645 . 58 ASP HA H 4.577 0.050 1 646 . 58 ASP CB C 39.740 0.10 1 647 . 58 ASP HB3 H 2.999 0.050 2 648 . 58 ASP HB2 H 2.621 0.050 2 649 . 58 ASP CG C 180.900 0.10 1 650 . 58 ASP C C 177.860 0.10 1 651 . 59 GLY N N 108.150 0.10 1 652 . 59 GLY H H 7.524 0.050 1 653 . 59 GLY CA C 47.000 0.10 1 654 . 59 GLY HA3 H 3.745 0.050 2 655 . 59 GLY HA2 H 3.830 0.050 2 656 . 59 GLY C C 175.100 0.10 1 657 . 60 ASN N N 118.400 0.10 1 658 . 60 ASN H H 8.121 0.050 1 659 . 60 ASN CA C 52.530 0.10 1 660 . 60 ASN HA H 4.580 0.050 1 661 . 60 ASN CB C 37.460 0.10 1 662 . 60 ASN HB3 H 3.250 0.050 2 663 . 60 ASN HB2 H 2.600 0.050 2 664 . 60 ASN CG C 178.900 0.10 1 665 . 60 ASN ND2 N 114.660 0.10 1 666 . 60 ASN HD21 H 7.644 0.050 2 667 . 60 ASN HD22 H 6.882 0.050 2 668 . 60 ASN C C 176.900 0.10 1 669 . 61 GLY N N 113.010 0.10 1 670 . 61 GLY H H 10.518 0.050 1 671 . 61 GLY CA C 45.400 0.10 1 672 . 61 GLY HA3 H 3.440 0.050 2 673 . 61 GLY HA2 H 4.200 0.050 2 674 . 61 GLY C C 173.400 0.10 1 675 . 62 THR N N 107.880 0.10 1 676 . 62 THR H H 7.594 0.050 1 677 . 62 THR CA C 59.350 0.10 1 678 . 62 THR HA H 4.730 0.050 1 679 . 62 THR CB C 72.200 0.10 1 680 . 62 THR HB H 3.960 0.050 1 681 . 62 THR CG2 C 22.400 0.10 1 682 . 62 THR HG2 H 1.060 0.050 1 683 . 62 THR C C 173.500 0.10 1 684 . 63 ILE N N 122.990 0.10 1 685 . 63 ILE H H 8.697 0.050 1 686 . 63 ILE CA C 59.500 0.10 1 687 . 63 ILE HA H 5.140 0.050 1 688 . 63 ILE CB C 39.630 0.10 1 689 . 63 ILE HB H 2.052 0.050 1 690 . 63 ILE CG1 C 27.390 0.10 2 691 . 63 ILE HG13 H 1.113 0.050 1 692 . 63 ILE HG12 H 1.600 0.050 1 693 . 63 ILE CD1 C 13.800 0.10 1 694 . 63 ILE HD1 H 0.990 0.050 1 695 . 63 ILE CG2 C 18.390 0.10 1 696 . 63 ILE HG2 H 1.200 0.050 1 697 . 63 ILE C C 175.700 0.10 1 698 . 64 ASP N N 128.000 0.10 1 699 . 64 ASP H H 8.876 0.050 1 700 . 64 ASP CA C 51.840 0.10 1 701 . 64 ASP HA H 5.415 0.050 1 702 . 64 ASP CB C 42.200 0.10 1 703 . 64 ASP HB3 H 2.790 0.050 2 704 . 64 ASP HB2 H 3.090 0.050 2 705 . 64 ASP CG C 178.950 0.10 1 706 . 64 ASP C C 176.200 0.10 1 707 . 65 PHE N N 118.010 0.10 1 708 . 65 PHE H H 8.893 0.050 1 709 . 65 PHE CA C 63.242 0.10 1 710 . 65 PHE HA H 3.971 0.050 1 711 . 65 PHE CB C 35.900 0.10 1 712 . 65 PHE HB3 H 2.759 0.050 2 713 . 65 PHE HB2 H 2.006 0.050 2 714 . 65 PHE CD1 C 131.830 0.10 1 715 . 65 PHE HD1 H 6.681 0.050 1 716 . 65 PHE CE1 C 131.050 0.10 1 717 . 65 PHE HE1 H 7.150 0.050 1 718 . 65 PHE CE2 C 131.050 0.10 1 719 . 65 PHE HE2 H 7.150 0.050 1 720 . 65 PHE CD2 C 131.830 0.10 1 721 . 65 PHE HD2 H 6.681 0.050 1 722 . 65 PHE C C 177.900 0.10 1 723 . 66 PRO CA C 66.700 0.10 1 724 . 66 PRO HA H 3.782 0.050 1 725 . 66 PRO CB C 30.600 0.10 1 726 . 66 PRO HB3 H 1.830 0.050 2 727 . 66 PRO HB2 H 2.150 0.050 2 728 . 66 PRO CG C 28.320 0.10 1 729 . 66 PRO HG3 H 1.820 0.050 2 730 . 66 PRO HG2 H 2.120 0.050 2 731 . 66 PRO CD C 49.040 0.10 1 732 . 66 PRO HD3 H 3.700 0.050 1 733 . 66 PRO HD2 H 3.700 0.050 1 734 . 66 PRO C C 180.000 0.10 1 735 . 67 GLU N N 117.300 0.10 1 736 . 67 GLU H H 8.137 0.050 1 737 . 67 GLU CA C 58.830 0.10 1 738 . 67 GLU HA H 3.968 0.050 1 739 . 67 GLU CB C 30.150 0.10 1 740 . 67 GLU HB3 H 2.570 0.050 2 741 . 67 GLU HB2 H 2.317 0.050 2 742 . 67 GLU CG C 37.340 0.10 1 743 . 67 GLU HG3 H 2.880 0.050 2 744 . 67 GLU HG2 H 2.940 0.050 2 745 . 67 GLU C C 179.400 0.10 1 746 . 68 PHE N N 122.910 0.10 1 747 . 68 PHE H H 8.607 0.050 1 748 . 68 PHE CA C 61.510 0.10 1 749 . 68 PHE HA H 3.700 0.050 1 750 . 68 PHE CB C 40.510 0.10 1 751 . 68 PHE HB3 H 3.100 0.050 2 752 . 68 PHE HB2 H 3.380 0.050 2 753 . 68 PHE CD1 C 131.840 0.10 1 754 . 68 PHE HD1 H 6.810 0.050 1 755 . 68 PHE CE1 C 131.210 0.10 1 756 . 68 PHE HE1 H 7.023 0.050 1 757 . 68 PHE CE2 C 131.210 0.10 1 758 . 68 PHE HE2 H 7.023 0.050 1 759 . 68 PHE CD2 C 131.840 0.10 1 760 . 68 PHE HD2 H 6.810 0.050 1 761 . 68 PHE C C 176.600 0.10 1 762 . 69 LEU N N 119.450 0.10 1 763 . 69 LEU H H 8.776 0.050 1 764 . 69 LEU CA C 57.940 0.10 1 765 . 69 LEU HA H 3.270 0.050 1 766 . 69 LEU CB C 41.320 0.10 1 767 . 69 LEU HB3 H 1.169 0.050 2 768 . 69 LEU HB2 H 1.193 0.050 2 769 . 69 LEU CG C 26.060 0.10 1 770 . 69 LEU HG H 1.050 0.050 1 771 . 69 LEU CD1 C 24.840 0.10 1 772 . 69 LEU HD1 H 0.650 0.050 2 773 . 69 LEU CD2 C 25.500 0.10 1 774 . 69 LEU HD2 H 0.607 0.050 2 775 . 69 LEU C C 178.500 0.10 1 776 . 70 THR N N 114.110 0.10 1 777 . 70 THR H H 7.530 0.050 1 778 . 70 THR CA C 66.300 0.10 1 779 . 70 THR HA H 3.610 0.050 1 780 . 70 THR CB C 68.390 0.10 1 781 . 70 THR HB H 4.070 0.050 1 782 . 70 THR CG2 C 21.294 0.10 1 783 . 70 THR HG2 H 1.184 0.050 1 784 . 70 THR C C 176.000 0.10 1 785 . 71 MET N N 120.120 0.10 1 786 . 71 MET H H 7.114 0.050 1 787 . 71 MET CA C 58.700 0.10 1 788 . 71 MET HA H 3.630 0.050 1 789 . 71 MET CB C 30.810 0.10 1 790 . 71 MET HB3 H 1.556 0.050 2 791 . 71 MET HB2 H 1.650 0.050 2 792 . 71 MET CG C 31.060 0.10 1 793 . 71 MET HG3 H 1.410 0.050 1 794 . 71 MET HG2 H 1.410 0.050 1 795 . 71 MET CE C 16.460 0.10 1 796 . 71 MET HE H 0.770 0.050 1 797 . 71 MET C C 177.700 0.10 1 798 . 72 MET N N 117.640 0.10 1 799 . 72 MET H H 7.899 0.050 1 800 . 72 MET CA C 56.342 0.10 1 801 . 72 MET HA H 3.520 0.050 1 802 . 72 MET CB C 30.350 0.10 1 803 . 72 MET HB3 H 0.680 0.050 2 804 . 72 MET HB2 H 0.970 0.050 2 805 . 72 MET CG C 32.550 0.10 1 806 . 72 MET HG3 H 1.220 0.050 2 807 . 72 MET HG2 H 1.300 0.050 2 808 . 72 MET CE C 17.390 0.10 1 809 . 72 MET HE H 1.595 0.050 1 810 . 72 MET C C 178.200 0.10 1 811 . 73 ALA N N 119.750 0.10 1 812 . 73 ALA H H 8.089 0.050 1 813 . 73 ALA CA C 54.300 0.10 1 814 . 73 ALA HA H 3.920 0.050 1 815 . 73 ALA CB C 18.300 0.10 1 816 . 73 ALA HB H 1.310 0.050 1 817 . 73 ALA C C 179.600 0.10 1 818 . 74 ARG N N 115.620 0.10 1 819 . 74 ARG H H 7.148 0.050 1 820 . 74 ARG CA C 58.000 0.10 1 821 . 74 ARG HA H 4.030 0.050 1 822 . 74 ARG CB C 30.500 0.10 1 823 . 74 ARG HB3 H 1.770 0.050 1 824 . 74 ARG HB2 H 1.770 0.050 1 825 . 74 ARG CG C 27.280 0.10 1 826 . 74 ARG HG3 H 1.670 0.050 2 827 . 74 ARG HG2 H 1.570 0.050 2 828 . 74 ARG CD C 43.420 0.10 1 829 . 74 ARG HD3 H 3.030 0.050 1 830 . 74 ARG HD2 H 3.030 0.050 1 831 . 74 ARG C C 178.200 0.10 1 832 . 75 LYS N N 117.410 0.10 1 833 . 75 LYS H H 7.876 0.050 1 834 . 75 LYS CA C 56.410 0.10 1 835 . 75 LYS HA H 4.180 0.050 1 836 . 75 LYS CB C 32.300 0.10 1 837 . 75 LYS HB3 H 1.621 0.050 2 838 . 75 LYS HB2 H 1.762 0.050 2 839 . 75 LYS CG C 24.800 0.10 1 840 . 75 LYS HG3 H 1.246 0.050 2 841 . 75 LYS HG2 H 1.320 0.050 2 842 . 75 LYS CD C 28.000 0.10 1 843 . 75 LYS HD3 H 1.526 0.050 2 844 . 75 LYS HD2 H 1.425 0.050 2 845 . 75 LYS CE C 41.670 0.10 1 846 . 75 LYS HE3 H 2.610 0.050 2 847 . 75 LYS HE2 H 2.674 0.050 2 848 . 75 LYS C C 177.500 0.10 1 849 . 76 MET N N 117.910 0.10 1 850 . 76 MET H H 7.965 0.050 1 851 . 76 MET CA C 56.408 0.10 1 852 . 76 MET HA H 4.302 0.050 1 853 . 76 MET CB C 32.600 0.10 1 854 . 76 MET HB3 H 2.110 0.050 2 855 . 76 MET HB2 H 2.040 0.050 2 856 . 76 MET CG C 32.250 0.10 1 857 . 76 MET HG3 H 2.570 0.050 1 858 . 76 MET HG2 H 2.570 0.050 1 859 . 76 MET CE C 17.330 0.10 1 860 . 76 MET HE H 2.034 0.050 1 861 . 76 MET C C 176.400 0.10 1 862 . 77 LYS N N 119.450 0.10 1 863 . 77 LYS H H 7.613 0.050 1 864 . 77 LYS CA C 56.201 0.10 1 865 . 77 LYS HA H 4.300 0.050 1 866 . 77 LYS CB C 33.120 0.10 1 867 . 77 LYS HB3 H 1.756 0.050 2 868 . 77 LYS HB2 H 1.836 0.050 2 869 . 77 LYS CG C 24.410 0.10 1 870 . 77 LYS HG3 H 1.407 0.050 1 871 . 77 LYS HG2 H 1.407 0.050 1 872 . 77 LYS CD C 28.800 0.10 1 873 . 77 LYS HD3 H 1.636 0.050 1 874 . 77 LYS HD2 H 1.636 0.050 1 875 . 77 LYS CE C 41.770 0.10 1 876 . 77 LYS HE3 H 2.952 0.050 1 877 . 77 LYS HE2 H 2.952 0.050 1 878 . 77 LYS C C 176.400 0.10 1 879 . 78 ASP N N 119.450 0.10 1 880 . 78 ASP H H 7.824 0.050 1 881 . 78 ASP CA C 54.400 0.10 1 882 . 78 ASP HA H 4.600 0.050 1 883 . 78 ASP CB C 41.370 0.10 1 884 . 78 ASP HB3 H 2.580 0.050 2 885 . 78 ASP HB2 H 2.737 0.050 2 886 . 78 ASP CG C 180.240 0.10 1 887 . 78 ASP C C 176.300 0.10 1 888 . 79 THR N N 113.151 0.10 1 889 . 79 THR H H 7.820 0.050 1 890 . 79 THR CA C 61.516 0.10 1 891 . 79 THR HA H 4.220 0.050 1 892 . 79 THR CB C 69.850 0.10 1 893 . 79 THR HB H 4.100 0.050 1 894 . 79 THR CG2 C 21.530 0.10 1 895 . 79 THR HG2 H 1.144 0.050 1 896 . 79 THR C C 174.000 0.10 1 897 . 80 ASP N N 122.700 0.10 1 898 . 80 ASP H H 8.283 0.050 1 899 . 80 ASP CA C 53.900 0.10 1 900 . 80 ASP HA H 4.700 0.050 1 901 . 80 ASP CB C 41.700 0.10 1 902 . 80 ASP HB3 H 2.570 0.050 2 903 . 80 ASP HB2 H 2.470 0.050 2 904 . 80 ASP CG C 179.900 0.10 1 905 . 80 ASP C C 175.800 0.10 1 906 . 81 SER N N 116.820 0.10 1 907 . 81 SER H H 8.320 0.050 1 908 . 81 SER CA C 57.280 0.10 1 909 . 81 SER HA H 4.500 0.050 1 910 . 81 SER CB C 64.700 0.10 1 911 . 81 SER HB3 H 3.930 0.050 2 912 . 81 SER HB2 H 4.110 0.050 2 913 . 81 SER C C 175.100 0.10 1 914 . 82 GLU N N 122.840 0.10 1 915 . 82 GLU H H 8.730 0.050 1 916 . 82 GLU CA C 59.800 0.10 1 917 . 82 GLU HA H 3.910 0.050 1 918 . 82 GLU CB C 29.300 0.10 1 919 . 82 GLU HB3 H 2.030 0.050 1 920 . 82 GLU HB2 H 2.030 0.050 1 921 . 82 GLU CG C 36.780 0.10 1 922 . 82 GLU HG3 H 2.216 0.050 1 923 . 82 GLU HG2 H 2.216 0.050 1 924 . 82 GLU C C 178.180 0.10 1 925 . 83 GLU N N 117.540 0.10 1 926 . 83 GLU H H 8.410 0.050 1 927 . 83 GLU CA C 59.740 0.10 1 928 . 83 GLU HA H 3.994 0.050 1 929 . 83 GLU CB C 29.200 0.10 1 930 . 83 GLU HB3 H 2.175 0.050 2 931 . 83 GLU HB2 H 1.970 0.050 2 932 . 83 GLU CG C 36.800 0.10 1 933 . 83 GLU HG3 H 2.257 0.050 1 934 . 83 GLU HG2 H 2.257 0.050 1 935 . 83 GLU C C 178.600 0.10 1 936 . 84 GLU N N 118.200 0.10 1 937 . 84 GLU H H 7.660 0.050 1 938 . 84 GLU CA C 59.100 0.10 1 939 . 84 GLU HA H 3.950 0.050 1 940 . 84 GLU CB C 29.530 0.10 1 941 . 84 GLU HB3 H 2.217 0.050 2 942 . 84 GLU HB2 H 2.020 0.050 2 943 . 84 GLU CG C 35.600 0.10 1 944 . 84 GLU HG3 H 2.200 0.050 1 945 . 84 GLU HG2 H 2.200 0.050 1 946 . 84 GLU C C 179.600 0.10 1 947 . 85 ILE N N 121.000 0.10 1 948 . 85 ILE H H 8.076 0.050 1 949 . 85 ILE CA C 65.900 0.10 1 950 . 85 ILE HA H 3.800 0.050 1 951 . 85 ILE CB C 37.510 0.10 1 952 . 85 ILE HB H 2.099 0.050 1 953 . 85 ILE CG1 C 29.370 0.10 2 954 . 85 ILE HG13 H 1.821 0.050 1 955 . 85 ILE HG12 H 0.875 0.050 1 956 . 85 ILE CD1 C 13.350 0.10 1 957 . 85 ILE HD1 H 0.691 0.050 1 958 . 85 ILE CG2 C 19.110 0.10 1 959 . 85 ILE HG2 H 1.077 0.050 1 960 . 85 ILE C C 178.200 0.10 1 961 . 86 ARG N N 120.530 0.10 1 962 . 86 ARG H H 8.444 0.050 1 963 . 86 ARG CA C 59.940 0.10 1 964 . 86 ARG HA H 4.111 0.050 1 965 . 86 ARG CB C 29.670 0.10 1 966 . 86 ARG HB3 H 1.861 0.050 2 967 . 86 ARG HB2 H 2.012 0.050 2 968 . 86 ARG CG C 27.300 0.10 1 969 . 86 ARG HG3 H 1.610 0.050 2 970 . 86 ARG HG2 H 1.500 0.050 2 971 . 86 ARG CD C 43.000 0.10 1 972 . 86 ARG HD3 H 2.924 0.050 1 973 . 86 ARG HD2 H 2.924 0.050 1 974 . 86 ARG C C 179.200 0.10 1 975 . 87 GLU N N 116.520 0.10 1 976 . 87 GLU H H 8.028 0.050 1 977 . 87 GLU CA C 58.727 0.10 1 978 . 87 GLU HA H 4.114 0.050 1 979 . 87 GLU CB C 29.160 0.10 1 980 . 87 GLU HB3 H 2.103 0.050 2 981 . 87 GLU HB2 H 2.212 0.050 2 982 . 87 GLU CG C 35.880 0.10 1 983 . 87 GLU HG3 H 2.253 0.050 2 984 . 87 GLU HG2 H 2.390 0.050 2 985 . 87 GLU C C 179.300 0.10 1 986 . 88 ALA N N 121.100 0.10 1 987 . 88 ALA H H 8.101 0.050 1 988 . 88 ALA CA C 55.490 0.10 1 989 . 88 ALA HA H 4.152 0.050 1 990 . 88 ALA CB C 17.560 0.10 1 991 . 88 ALA HB H 1.840 0.050 1 992 . 88 ALA C C 178.800 0.10 1 993 . 89 PHE N N 118.067 0.10 1 994 . 89 PHE H H 8.515 0.050 1 995 . 89 PHE CA C 62.300 0.10 1 996 . 89 PHE HA H 3.149 0.050 1 997 . 89 PHE CB C 39.270 0.10 1 998 . 89 PHE HB3 H 3.241 0.050 2 999 . 89 PHE HB2 H 2.841 0.050 2 1000 . 89 PHE CD1 C 131.640 0.10 1 1001 . 89 PHE HD1 H 6.554 0.050 1 1002 . 89 PHE HE1 H 6.720 0.050 1 1003 . 89 PHE HE2 H 6.720 0.050 1 1004 . 89 PHE CD2 C 131.640 0.10 1 1005 . 89 PHE HD2 H 6.554 0.050 1 1006 . 89 PHE C C 177.200 0.10 1 1007 . 90 ARG N N 114.880 0.10 1 1008 . 90 ARG H H 7.699 0.050 1 1009 . 90 ARG CA C 58.600 0.10 1 1010 . 90 ARG HA H 3.790 0.050 1 1011 . 90 ARG CB C 30.411 0.10 1 1012 . 90 ARG HB3 H 1.913 0.050 1 1013 . 90 ARG HB2 H 1.913 0.050 1 1014 . 90 ARG CG C 27.840 0.10 1 1015 . 90 ARG HG3 H 1.706 0.050 2 1016 . 90 ARG HG2 H 1.936 0.050 2 1017 . 90 ARG CD C 43.480 0.10 1 1018 . 90 ARG HD3 H 3.146 0.050 1 1019 . 90 ARG HD2 H 3.146 0.050 1 1020 . 90 ARG C C 177.500 0.10 1 1021 . 91 VAL N N 117.490 0.10 1 1022 . 91 VAL H H 7.247 0.050 1 1023 . 91 VAL CA C 65.680 0.10 1 1024 . 91 VAL HA H 3.370 0.050 1 1025 . 91 VAL CB C 31.060 0.10 1 1026 . 91 VAL HB H 2.000 0.050 1 1027 . 91 VAL CG2 C 22.940 0.10 1 1028 . 91 VAL HG2 H 0.946 0.050 2 1029 . 91 VAL CG1 C 20.840 0.10 1 1030 . 91 VAL HG1 H 0.412 0.050 2 1031 . 91 VAL C C 176.200 0.10 1 1032 . 92 PHE N N 113.010 0.10 1 1033 . 92 PHE H H 6.780 0.050 1 1034 . 92 PHE CA C 59.980 0.10 1 1035 . 92 PHE HA H 4.142 0.050 1 1036 . 92 PHE CB C 41.560 0.10 1 1037 . 92 PHE HB3 H 2.824 0.050 2 1038 . 92 PHE HB2 H 2.604 0.050 2 1039 . 92 PHE CD1 C 130.440 0.10 1 1040 . 92 PHE HD1 H 7.224 0.050 1 1041 . 92 PHE CE1 C 132.740 0.10 1 1042 . 92 PHE HE1 H 7.385 0.050 1 1043 . 92 PHE CZ C 128.750 0.10 1 1044 . 92 PHE HZ H 7.194 0.050 1 1045 . 92 PHE CE2 C 132.740 0.10 1 1046 . 92 PHE HE2 H 7.385 0.050 1 1047 . 92 PHE CD2 C 130.440 0.10 1 1048 . 92 PHE HD2 H 7.224 0.050 1 1049 . 92 PHE C C 176.600 0.10 1 1050 . 93 ASP N N 115.980 0.10 1 1051 . 93 ASP H H 7.745 0.050 1 1052 . 93 ASP CA C 52.240 0.10 1 1053 . 93 ASP HA H 4.570 0.050 1 1054 . 93 ASP CB C 38.700 0.10 1 1055 . 93 ASP HB3 H 1.335 0.050 2 1056 . 93 ASP HB2 H 2.199 0.050 2 1057 . 93 ASP CG C 178.600 0.10 1 1058 . 93 ASP C C 177.600 0.10 1 1059 . 94 LYS N N 125.320 0.10 1 1060 . 94 LYS H H 7.629 0.050 1 1061 . 94 LYS CA C 58.500 0.10 1 1062 . 94 LYS HA H 3.860 0.050 1 1063 . 94 LYS CB C 32.340 0.10 1 1064 . 94 LYS HB3 H 1.790 0.050 1 1065 . 94 LYS HB2 H 1.790 0.050 1 1066 . 94 LYS CG C 23.840 0.10 1 1067 . 94 LYS HG3 H 1.408 0.050 1 1068 . 94 LYS HG2 H 1.408 0.050 1 1069 . 94 LYS CD C 27.940 0.10 1 1070 . 94 LYS HD3 H 1.529 0.050 1 1071 . 94 LYS HD2 H 1.529 0.050 1 1072 . 94 LYS CE C 41.420 0.10 1 1073 . 94 LYS HE3 H 2.704 0.050 2 1074 . 94 LYS HE2 H 2.795 0.050 2 1075 . 94 LYS C C 178.300 0.10 1 1076 . 95 ASP N N 113.811 0.10 1 1077 . 95 ASP H H 8.182 0.050 1 1078 . 95 ASP CA C 52.910 0.10 1 1079 . 95 ASP HA H 4.500 0.050 1 1080 . 95 ASP CB C 39.547 0.10 1 1081 . 95 ASP HB3 H 2.600 0.050 2 1082 . 95 ASP HB2 H 3.021 0.050 2 1083 . 95 ASP CG C 180.900 0.10 1 1084 . 95 ASP C C 177.800 0.10 1 1085 . 96 GLY N N 108.700 0.10 1 1086 . 96 GLY H H 7.690 0.050 1 1087 . 96 GLY CA C 46.900 0.10 1 1088 . 96 GLY HA3 H 3.800 0.050 1 1089 . 96 GLY HA2 H 3.800 0.050 1 1090 . 96 GLY C C 175.200 0.10 1 1091 . 97 ASN N N 119.220 0.10 1 1092 . 97 ASN H H 8.314 0.050 1 1093 . 97 ASN CA C 52.480 0.10 1 1094 . 97 ASN HA H 4.610 0.050 1 1095 . 97 ASN CB C 38.140 0.10 1 1096 . 97 ASN HB3 H 2.610 0.050 2 1097 . 97 ASN HB2 H 3.360 0.050 2 1098 . 97 ASN CG C 179.900 0.10 1 1099 . 97 ASN ND2 N 116.370 0.10 1 1100 . 97 ASN HD21 H 7.965 0.050 2 1101 . 97 ASN HD22 H 7.321 0.050 2 1102 . 97 ASN C C 176.300 0.10 1 1103 . 98 GLY N N 112.110 0.10 1 1104 . 98 GLY H H 10.489 0.050 1 1105 . 98 GLY CA C 45.000 0.10 1 1106 . 98 GLY HA3 H 3.440 0.050 2 1107 . 98 GLY HA2 H 4.070 0.050 2 1108 . 98 GLY C C 173.000 0.10 1 1109 . 99 TYR N N 116.020 0.10 1 1110 . 99 TYR H H 7.661 0.050 1 1111 . 99 TYR CA C 56.290 0.10 1 1112 . 99 TYR HA H 5.024 0.050 1 1113 . 99 TYR CB C 42.590 0.10 1 1114 . 99 TYR HB3 H 2.492 0.050 2 1115 . 99 TYR HB2 H 2.584 0.050 2 1116 . 99 TYR CD1 C 133.270 0.10 3 1117 . 99 TYR HD1 H 6.781 0.050 1 1118 . 99 TYR CE1 C 118.043 0.10 1 1119 . 99 TYR HE1 H 6.908 0.050 1 1120 . 99 TYR CE2 C 118.043 0.10 1 1121 . 99 TYR HE2 H 6.908 0.050 1 1122 . 99 TYR CD2 C 133.370 0.10 3 1123 . 99 TYR HD2 H 6.781 0.050 1 1124 . 99 TYR C C 175.000 0.10 1 1125 . 100 ILE N N 126.840 0.10 1 1126 . 100 ILE H H 10.022 0.050 1 1127 . 100 ILE CA C 61.100 0.10 1 1128 . 100 ILE HA H 4.600 0.050 1 1129 . 100 ILE CB C 39.270 0.10 1 1130 . 100 ILE HB H 1.804 0.050 1 1131 . 100 ILE CG1 C 26.670 0.10 2 1132 . 100 ILE HG13 H 0.190 0.050 1 1133 . 100 ILE HG12 H 1.240 0.050 1 1134 . 100 ILE CD1 C 16.660 0.10 1 1135 . 100 ILE HD1 H 0.440 0.050 1 1136 . 100 ILE CG2 C 17.220 0.10 1 1137 . 100 ILE HG2 H 0.847 0.050 1 1138 . 100 ILE C C 175.400 0.10 1 1139 . 101 SER N N 123.520 0.10 1 1140 . 101 SER H H 8.930 0.050 1 1141 . 101 SER CA C 55.500 0.10 1 1142 . 101 SER HA H 4.830 0.050 1 1143 . 101 SER CB C 66.700 0.10 1 1144 . 101 SER HB3 H 3.860 0.050 2 1145 . 101 SER HB2 H 4.390 0.050 2 1146 . 101 SER C C 175.300 0.10 1 1147 . 102 ALA N N 122.780 0.10 1 1148 . 102 ALA H H 9.267 0.050 1 1149 . 102 ALA CA C 55.700 0.10 1 1150 . 102 ALA HA H 3.797 0.050 1 1151 . 102 ALA CB C 17.830 0.10 1 1152 . 102 ALA HB H 1.430 0.050 1 1153 . 102 ALA C C 179.400 0.10 1 1154 . 103 ALA N N 117.950 0.10 1 1155 . 103 ALA H H 8.126 0.050 1 1156 . 103 ALA CA C 55.050 0.10 1 1157 . 103 ALA HA H 3.960 0.050 1 1158 . 103 ALA CB C 18.200 0.10 1 1159 . 103 ALA HB H 1.350 0.050 1 1160 . 103 ALA C C 181.400 0.10 1 1161 . 104 GLU N N 119.990 0.10 1 1162 . 104 GLU H H 7.831 0.050 1 1163 . 104 GLU CA C 59.040 0.10 1 1164 . 104 GLU HA H 3.900 0.050 1 1165 . 104 GLU CB C 29.540 0.10 1 1166 . 104 GLU HB3 H 2.100 0.050 2 1167 . 104 GLU CG C 37.520 0.10 1 1168 . 104 GLU HG3 H 2.214 0.050 2 1169 . 104 GLU HG2 H 2.256 0.050 2 1170 . 104 GLU C C 179.500 0.10 1 1171 . 105 LEU N N 120.480 0.10 1 1172 . 105 LEU H H 8.165 0.050 1 1173 . 105 LEU CA C 58.400 0.10 1 1174 . 105 LEU HA H 4.110 0.050 1 1175 . 105 LEU CB C 41.750 0.10 1 1176 . 105 LEU HB3 H 1.167 0.050 2 1177 . 105 LEU HB2 H 1.660 0.050 2 1178 . 105 LEU CG C 26.970 0.10 1 1179 . 105 LEU HG H 1.263 0.050 1 1180 . 105 LEU CD1 C 25.530 0.10 1 1181 . 105 LEU HD1 H 0.313 0.050 2 1182 . 105 LEU CD2 C 24.230 0.10 1 1183 . 105 LEU HD2 H 0.395 0.050 2 1184 . 105 LEU C C 178.500 0.10 1 1185 . 106 ARG N N 117.820 0.10 1 1186 . 106 ARG H H 8.779 0.050 1 1187 . 106 ARG CA C 59.900 0.10 1 1188 . 106 ARG HA H 3.630 0.050 1 1189 . 106 ARG CB C 30.240 0.10 1 1190 . 106 ARG HB3 H 1.930 0.050 1 1191 . 106 ARG HB2 H 1.930 0.050 1 1192 . 106 ARG CG C 27.770 0.10 1 1193 . 106 ARG HG3 H 1.531 0.050 2 1194 . 106 ARG HG2 H 1.579 0.050 2 1195 . 106 ARG CD C 43.470 0.10 1 1196 . 106 ARG HD3 H 3.128 0.050 2 1197 . 106 ARG HD2 H 3.202 0.050 2 1198 . 106 ARG C C 178.700 0.10 1 1199 . 107 HIS N N 119.680 0.10 1 1200 . 107 HIS H H 8.127 0.050 1 1201 . 107 HIS CA C 60.080 0.10 1 1202 . 107 HIS HA H 4.222 0.050 1 1203 . 107 HIS CB C 30.390 0.10 1 1204 . 107 HIS HB3 H 3.222 0.050 2 1205 . 107 HIS HB2 H 3.418 0.050 2 1206 . 107 HIS CE1 C 139.100 0.10 1 1207 . 107 HIS HE1 H 7.760 0.050 3 1208 . 107 HIS C C 177.300 0.10 1 1209 . 108 VAL N N 118.500 0.10 1 1210 . 108 VAL H H 7.817 0.050 1 1211 . 108 VAL CA C 66.853 0.10 1 1212 . 108 VAL HA H 3.550 0.050 1 1213 . 108 VAL CB C 32.100 0.10 1 1214 . 108 VAL HB H 2.120 0.050 1 1215 . 108 VAL CG2 C 20.603 0.10 1 1216 . 108 VAL HG2 H 0.663 0.050 2 1217 . 108 VAL CG1 C 23.310 0.10 1 1218 . 108 VAL HG1 H 1.040 0.050 2 1219 . 108 VAL C C 178.000 0.10 1 1220 . 109 MET N N 114.850 0.10 1 1221 . 109 MET H H 8.137 0.050 1 1222 . 109 MET CA C 57.520 0.10 1 1223 . 109 MET HA H 4.220 0.050 1 1224 . 109 MET CB C 30.275 0.10 1 1225 . 109 MET HB3 H 1.909 0.050 2 1226 . 109 MET HB2 H 2.070 0.050 2 1227 . 109 MET CG C 32.400 0.10 1 1228 . 109 MET HG3 H 2.430 0.050 2 1229 . 109 MET HG2 H 2.690 0.050 2 1230 . 109 MET CE C 16.630 0.10 1 1231 . 109 MET HE H 1.903 0.050 1 1232 . 109 MET C C 179.000 0.10 1 1233 . 110 THR N N 115.450 0.10 1 1234 . 110 THR H H 8.553 0.050 1 1235 . 110 THR CA C 66.320 0.10 1 1236 . 110 THR HA H 4.038 0.050 1 1237 . 110 THR CB C 68.520 0.10 1 1238 . 110 THR HB H 4.240 0.050 1 1239 . 110 THR CG2 C 21.340 0.10 1 1240 . 110 THR HG2 H 1.117 0.050 1 1241 . 110 THR C C 178.500 0.10 1 1242 . 111 ASN N N 123.010 0.10 1 1243 . 111 ASN H H 7.944 0.050 1 1244 . 111 ASN CA C 55.700 0.10 1 1245 . 111 ASN HA H 4.370 0.050 1 1246 . 111 ASN CB C 37.400 0.10 1 1247 . 111 ASN HB3 H 2.700 0.050 2 1248 . 111 ASN HB2 H 2.650 0.050 2 1249 . 111 ASN CG C 176.200 0.10 1 1250 . 111 ASN ND2 N 109.909 0.10 1 1251 . 111 ASN HD21 H 7.294 0.050 2 1252 . 111 ASN HD22 H 6.353 0.050 2 1253 . 111 ASN C C 177.200 0.10 1 1254 . 112 LEU N N 118.020 0.10 1 1255 . 112 LEU H H 7.707 0.050 1 1256 . 112 LEU CA C 55.700 0.10 1 1257 . 112 LEU HA H 4.137 0.050 1 1258 . 112 LEU CB C 42.660 0.10 1 1259 . 112 LEU HB3 H 1.600 0.050 2 1260 . 112 LEU HB2 H 1.895 0.050 2 1261 . 112 LEU CG C 26.570 0.10 1 1262 . 112 LEU HG H 1.288 0.050 1 1263 . 112 LEU CD1 C 23.930 0.10 1 1264 . 112 LEU HD1 H 0.746 0.050 2 1265 . 112 LEU CD2 C 26.100 0.10 1 1266 . 112 LEU HD2 H 0.785 0.050 2 1267 . 112 LEU C C 176.400 0.10 1 1268 . 113 GLY N N 104.580 0.10 1 1269 . 113 GLY H H 7.614 0.050 1 1270 . 113 GLY CA C 44.900 0.10 1 1271 . 113 GLY HA3 H 3.610 0.050 2 1272 . 113 GLY HA2 H 4.210 0.050 2 1273 . 113 GLY C C 174.580 0.10 1 1274 . 114 GLU N N 120.340 0.10 1 1275 . 114 GLU H H 7.860 0.050 1 1276 . 114 GLU CA C 55.000 0.10 1 1277 . 114 GLU HA H 4.340 0.050 1 1278 . 114 GLU CB C 30.750 0.10 1 1279 . 114 GLU HB3 H 1.626 0.050 2 1280 . 114 GLU HB2 H 1.799 0.050 2 1281 . 114 GLU CG C 35.550 0.10 1 1282 . 114 GLU HG3 H 1.936 0.050 2 1283 . 114 GLU HG2 H 2.036 0.050 2 1284 . 114 GLU CD C 182.500 0.10 1 1285 . 114 GLU C C 175.200 0.10 1 1286 . 115 LYS N N 124.620 0.10 1 1287 . 115 LYS H H 8.424 0.050 1 1288 . 115 LYS CA C 55.450 0.10 1 1289 . 115 LYS HA H 4.320 0.050 1 1290 . 115 LYS CB C 31.890 0.10 1 1291 . 115 LYS HB3 H 1.626 0.050 2 1292 . 115 LYS HB2 H 1.694 0.050 2 1293 . 115 LYS CG C 24.510 0.10 1 1294 . 115 LYS HG3 H 1.249 0.050 2 1295 . 115 LYS HG2 H 1.334 0.050 2 1296 . 115 LYS CD C 28.880 0.10 1 1297 . 115 LYS HD3 H 1.599 0.050 1 1298 . 115 LYS HD2 H 1.599 0.050 1 1299 . 115 LYS CE C 41.930 0.10 1 1300 . 115 LYS HE3 H 2.920 0.050 1 1301 . 115 LYS HE2 H 2.920 0.050 1 1302 . 115 LYS C C 175.400 0.10 1 1303 . 116 LEU N N 124.263 0.10 1 1304 . 116 LEU H H 7.915 0.050 1 1305 . 116 LEU CA C 53.800 0.10 1 1306 . 116 LEU HA H 4.750 0.050 1 1307 . 116 LEU CB C 44.900 0.10 1 1308 . 116 LEU HB3 H 1.530 0.050 2 1309 . 116 LEU HB2 H 1.390 0.050 2 1310 . 116 LEU CG C 27.480 0.10 1 1311 . 116 LEU HG H 1.481 0.050 1 1312 . 116 LEU CD1 C 27.204 0.10 1 1313 . 116 LEU HD1 H 0.705 0.050 2 1314 . 116 LEU CD2 C 24.130 0.10 1 1315 . 116 LEU HD2 H 0.725 0.050 2 1316 . 116 LEU C C 177.900 0.10 1 1317 . 117 THR N N 113.610 0.10 1 1318 . 117 THR H H 9.010 0.050 1 1319 . 117 THR CA C 60.490 0.10 1 1320 . 117 THR HA H 4.430 0.050 1 1321 . 117 THR CB C 71.090 0.10 1 1322 . 117 THR HB H 4.678 0.050 1 1323 . 117 THR HG2 H 1.240 0.050 1 1324 . 117 THR C C 175.600 0.10 1 1325 . 118 ASP N N 120.650 0.10 1 1326 . 118 ASP H H 8.772 0.050 1 1327 . 118 ASP CA C 57.800 0.10 1 1328 . 118 ASP HA H 4.150 0.050 1 1329 . 118 ASP CB C 39.700 0.10 1 1330 . 118 ASP HB3 H 2.520 0.050 2 1331 . 118 ASP HB2 H 2.700 0.050 2 1332 . 118 ASP CG C 179.700 0.10 1 1333 . 118 ASP C C 178.700 0.10 1 1334 . 119 GLU N N 118.790 0.10 1 1335 . 119 GLU H H 8.556 0.050 1 1336 . 119 GLU CA C 59.870 0.10 1 1337 . 119 GLU HA H 4.045 0.050 1 1338 . 119 GLU CB C 29.220 0.10 1 1339 . 119 GLU HB3 H 1.870 0.050 2 1340 . 119 GLU HB2 H 2.010 0.050 2 1341 . 119 GLU CG C 36.830 0.10 1 1342 . 119 GLU HG3 H 2.255 0.050 2 1343 . 119 GLU HG2 H 2.335 0.050 2 1344 . 119 GLU C C 179.100 0.10 1 1345 . 120 GLU N N 119.730 0.10 1 1346 . 120 GLU H H 7.614 0.050 1 1347 . 120 GLU CA C 59.188 0.10 1 1348 . 120 GLU HA H 3.947 0.050 1 1349 . 120 GLU CB C 30.560 0.10 1 1350 . 120 GLU HB3 H 2.340 0.050 2 1351 . 120 GLU HB2 H 1.850 0.050 2 1352 . 120 GLU CG C 38.080 0.10 1 1353 . 120 GLU HG3 H 2.191 0.050 2 1354 . 120 GLU HG2 H 2.317 0.050 2 1355 . 120 GLU CD C 183.500 0.10 1 1356 . 120 GLU C C 179.800 0.10 1 1357 . 121 VAL N N 120.100 0.10 1 1358 . 121 VAL H H 7.893 0.050 1 1359 . 121 VAL CA C 66.700 0.10 1 1360 . 121 VAL HA H 3.487 0.050 1 1361 . 121 VAL CB C 31.500 0.10 1 1362 . 121 VAL HB H 2.120 0.050 1 1363 . 121 VAL CG2 C 22.490 0.10 1 1364 . 121 VAL HG2 H 0.932 0.050 2 1365 . 121 VAL CG1 C 23.670 0.10 1 1366 . 121 VAL HG1 H 0.869 0.050 2 1367 . 121 VAL C C 177.500 0.10 1 1368 . 122 ASP N N 119.600 0.10 1 1369 . 122 ASP H H 7.985 0.050 1 1370 . 122 ASP CA C 57.625 0.10 1 1371 . 122 ASP HA H 4.267 0.050 1 1372 . 122 ASP CB C 40.495 0.10 1 1373 . 122 ASP HB3 H 2.560 0.050 2 1374 . 122 ASP HB2 H 2.713 0.050 2 1375 . 122 ASP CG C 179.300 0.10 1 1376 . 122 ASP C C 179.100 0.10 1 1377 . 123 GLU N N 118.660 0.10 1 1378 . 123 GLU H H 7.902 0.050 1 1379 . 123 GLU CA C 59.260 0.10 1 1380 . 123 GLU HA H 3.955 0.050 1 1381 . 123 GLU CB C 29.300 0.10 1 1382 . 123 GLU HB3 H 1.997 0.050 2 1383 . 123 GLU HB2 H 2.090 0.050 2 1384 . 123 GLU CG C 36.000 0.10 1 1385 . 123 GLU HG2 H 2.320 0.050 2 1386 . 123 GLU C C 178.600 0.10 1 1387 . 124 MET N N 118.660 0.10 1 1388 . 124 MET H H 7.589 0.050 1 1389 . 124 MET CA C 59.510 0.10 1 1390 . 124 MET HA H 4.298 0.050 1 1391 . 124 MET CB C 33.800 0.10 1 1392 . 124 MET HB3 H 1.718 0.050 2 1393 . 124 MET HB2 H 2.272 0.050 2 1394 . 124 MET CG C 33.390 0.10 1 1395 . 124 MET HG3 H 2.414 0.050 2 1396 . 124 MET HG2 H 2.873 0.050 2 1397 . 124 MET CE C 17.310 0.10 1 1398 . 124 MET HE H 1.886 0.050 1 1399 . 124 MET C C 178.600 0.10 1 1400 . 125 ILE N N 117.770 0.10 1 1401 . 125 ILE H H 7.710 0.050 1 1402 . 125 ILE CA C 62.700 0.10 1 1403 . 125 ILE HA H 3.560 0.050 1 1404 . 125 ILE CB C 36.000 0.10 1 1405 . 125 ILE HB H 2.200 0.050 1 1406 . 125 ILE CG1 C 27.620 0.10 2 1407 . 125 ILE HG13 H 1.377 0.050 1 1408 . 125 ILE HG12 H 1.325 0.050 1 1409 . 125 ILE CD1 C 9.770 0.10 1 1410 . 125 ILE HD1 H 0.520 0.050 1 1411 . 125 ILE CG2 C 16.550 0.10 1 1412 . 125 ILE HG2 H 0.694 0.050 1 1413 . 125 ILE C C 178.600 0.10 1 1414 . 126 ARG N N 118.150 0.10 1 1415 . 126 ARG H H 8.128 0.050 1 1416 . 126 ARG CA C 59.300 0.10 1 1417 . 126 ARG HA H 3.980 0.050 1 1418 . 126 ARG CB C 30.280 0.10 1 1419 . 126 ARG HB3 H 1.909 0.050 1 1420 . 126 ARG HB2 H 1.909 0.050 1 1421 . 126 ARG CG C 28.420 0.10 1 1422 . 126 ARG HG3 H 1.659 0.050 2 1423 . 126 ARG HG2 H 1.824 0.050 2 1424 . 126 ARG CD C 43.510 0.10 1 1425 . 126 ARG HD3 H 3.129 0.050 2 1426 . 126 ARG HD2 H 3.203 0.050 2 1427 . 126 ARG C C 178.100 0.10 1 1428 . 127 GLU N N 116.840 0.10 1 1429 . 127 GLU H H 7.678 0.050 1 1430 . 127 GLU CA C 59.130 0.10 1 1431 . 127 GLU HA H 3.950 0.050 1 1432 . 127 GLU CB C 30.400 0.10 1 1433 . 127 GLU HB3 H 2.100 0.050 2 1434 . 127 GLU HB2 H 2.290 0.050 2 1435 . 127 GLU CG C 37.240 0.10 1 1436 . 127 GLU HG3 H 2.218 0.050 2 1437 . 127 GLU HG2 H 2.630 0.050 2 1438 . 127 GLU CD C 183.800 0.10 1 1439 . 127 GLU C C 177.100 0.10 1 1440 . 128 ALA N N 116.840 0.10 1 1441 . 128 ALA H H 7.232 0.050 1 1442 . 128 ALA CA C 50.900 0.10 1 1443 . 128 ALA HA H 4.570 0.050 1 1444 . 128 ALA CB C 22.830 0.10 1 1445 . 128 ALA HB H 1.440 0.050 1 1446 . 128 ALA C C 177.100 0.10 1 1447 . 129 ASP N N 117.920 0.10 1 1448 . 129 ASP H H 7.900 0.050 1 1449 . 129 ASP CA C 54.500 0.10 1 1450 . 129 ASP HA H 4.430 0.050 1 1451 . 129 ASP CB C 41.000 0.10 1 1452 . 129 ASP HB3 H 2.370 0.050 2 1453 . 129 ASP HB2 H 2.710 0.050 2 1454 . 129 ASP CG C 179.200 0.10 1 1455 . 129 ASP C C 175.800 0.10 1 1456 . 130 ILE N N 127.438 0.10 1 1457 . 130 ILE H H 8.222 0.050 1 1458 . 130 ILE CA C 63.100 0.10 1 1459 . 130 ILE HA H 3.936 0.050 1 1460 . 130 ILE CB C 38.900 0.10 1 1461 . 130 ILE HB H 1.940 0.050 1 1462 . 130 ILE CG1 C 27.700 0.10 2 1463 . 130 ILE HG13 H 1.230 0.050 1 1464 . 130 ILE HG12 H 1.640 0.050 1 1465 . 130 ILE CD1 C 12.500 0.10 1 1466 . 130 ILE HD1 H 0.830 0.050 1 1467 . 130 ILE CG2 C 17.240 0.10 1 1468 . 130 ILE HG2 H 0.870 0.050 1 1469 . 130 ILE C C 177.800 0.10 1 1470 . 131 ASP N N 116.600 0.10 1 1471 . 131 ASP H H 8.278 0.050 1 1472 . 131 ASP CA C 53.900 0.10 1 1473 . 131 ASP HA H 4.450 0.050 1 1474 . 131 ASP CB C 39.837 0.10 1 1475 . 131 ASP HB3 H 2.600 0.050 2 1476 . 131 ASP HB2 H 3.020 0.050 2 1477 . 131 ASP CG C 180.600 0.10 1 1478 . 131 ASP C C 178.300 0.10 1 1479 . 132 GLY N N 108.080 0.10 1 1480 . 132 GLY H H 7.603 0.050 1 1481 . 132 GLY CA C 47.280 0.10 1 1482 . 132 GLY HA3 H 3.940 0.050 2 1483 . 132 GLY HA2 H 3.770 0.050 2 1484 . 132 GLY C C 175.350 0.10 1 1485 . 133 ASP N N 120.147 0.10 1 1486 . 133 ASP H H 8.283 0.050 1 1487 . 133 ASP CA C 53.600 0.10 1 1488 . 133 ASP HA H 4.410 0.050 1 1489 . 133 ASP CB C 40.100 0.10 1 1490 . 133 ASP HB3 H 2.940 0.050 2 1491 . 133 ASP HB2 H 2.470 0.050 2 1492 . 133 ASP CG C 182.500 0.10 1 1493 . 133 ASP C C 177.600 0.10 1 1494 . 134 GLY N N 111.930 0.10 1 1495 . 134 GLY H H 10.008 0.050 1 1496 . 134 GLY CA C 45.700 0.10 1 1497 . 134 GLY HA3 H 4.030 0.050 2 1498 . 134 GLY HA2 H 3.370 0.050 2 1499 . 134 GLY C C 172.900 0.10 1 1500 . 135 GLN N N 115.090 0.10 1 1501 . 135 GLN H H 7.951 0.050 1 1502 . 135 GLN CA C 53.100 0.10 1 1503 . 135 GLN HA H 4.912 0.050 1 1504 . 135 GLN CB C 32.650 0.10 1 1505 . 135 GLN HB3 H 1.960 0.050 2 1506 . 135 GLN HB2 H 1.780 0.050 2 1507 . 135 GLN CG C 33.320 0.10 1 1508 . 135 GLN HG3 H 1.921 0.050 2 1509 . 135 GLN HG2 H 1.982 0.050 2 1510 . 135 GLN CD C 179.000 0.10 1 1511 . 135 GLN NE2 N 108.090 0.10 1 1512 . 135 GLN HE21 H 6.479 0.050 2 1513 . 135 GLN HE22 H 5.854 0.050 2 1514 . 135 GLN C C 175.300 0.10 1 1515 . 136 VAL N N 125.150 0.10 1 1516 . 136 VAL H H 9.117 0.050 1 1517 . 136 VAL CA C 61.480 0.10 1 1518 . 136 VAL HA H 5.170 0.050 1 1519 . 136 VAL CB C 34.023 0.10 1 1520 . 136 VAL HB H 2.297 0.050 1 1521 . 136 VAL CG2 C 23.140 0.10 1 1522 . 136 VAL HG2 H 1.054 0.050 2 1523 . 136 VAL CG1 C 21.890 0.10 1 1524 . 136 VAL HG1 H 1.270 0.050 2 1525 . 136 VAL C C 175.900 0.10 1 1526 . 137 ASN N N 128.713 0.10 1 1527 . 137 ASN H H 9.518 0.050 1 1528 . 137 ASN CA C 50.900 0.10 1 1529 . 137 ASN HA H 5.301 0.050 1 1530 . 137 ASN CB C 38.500 0.10 1 1531 . 137 ASN HB3 H 2.960 0.050 2 1532 . 137 ASN HB2 H 3.120 0.050 2 1533 . 137 ASN CG C 175.300 0.10 1 1534 . 137 ASN ND2 N 108.430 0.10 1 1535 . 137 ASN HD21 H 7.110 0.050 2 1536 . 137 ASN HD22 H 6.820 0.050 2 1537 . 137 ASN C C 175.000 0.10 1 1538 . 138 TYR N N 118.100 0.10 1 1539 . 138 TYR H H 8.201 0.050 1 1540 . 138 TYR CA C 62.400 0.10 1 1541 . 138 TYR HA H 3.380 0.050 1 1542 . 138 TYR CB C 37.780 0.10 1 1543 . 138 TYR HB3 H 2.095 0.050 2 1544 . 138 TYR HB2 H 2.387 0.050 2 1545 . 138 TYR CD1 C 132.180 0.10 1 1546 . 138 TYR HD1 H 6.177 0.050 1 1547 . 138 TYR CE1 C 117.860 0.10 1 1548 . 138 TYR HE1 H 6.460 0.050 1 1549 . 138 TYR CE2 C 117.860 0.10 1 1550 . 138 TYR HE2 H 6.460 0.050 1 1551 . 138 TYR CD2 C 132.180 0.10 1 1552 . 138 TYR HD2 H 6.177 0.050 1 1553 . 138 TYR C C 176.300 0.10 1 1554 . 139 GLU N N 118.160 0.10 1 1555 . 139 GLU H H 8.020 0.050 1 1556 . 139 GLU CA C 60.300 0.10 1 1557 . 139 GLU HA H 3.600 0.050 1 1558 . 139 GLU CB C 28.850 0.10 1 1559 . 139 GLU HB3 H 1.912 0.050 2 1560 . 139 GLU HB2 H 2.020 0.050 2 1561 . 139 GLU CG C 37.120 0.10 1 1562 . 139 GLU HG3 H 2.280 0.050 2 1563 . 139 GLU HG2 H 2.218 0.050 2 1564 . 139 GLU C C 180.500 0.10 1 1565 . 140 GLU N N 119.520 0.10 1 1566 . 140 GLU H H 8.725 0.050 1 1567 . 140 GLU CA C 58.700 0.10 1 1568 . 140 GLU HA H 3.860 0.050 1 1569 . 140 GLU CB C 29.800 0.10 1 1570 . 140 GLU HB3 H 1.890 0.050 2 1571 . 140 GLU HB2 H 2.010 0.050 2 1572 . 140 GLU CG C 37.080 0.10 1 1573 . 140 GLU HG3 H 2.510 0.050 2 1574 . 140 GLU HG2 H 2.280 0.050 2 1575 . 140 GLU C C 179.500 0.10 1 1576 . 141 PHE N N 124.020 0.10 1 1577 . 141 PHE H H 8.602 0.050 1 1578 . 141 PHE CA C 62.190 0.10 1 1579 . 141 PHE HA H 3.734 0.050 1 1580 . 141 PHE CB C 40.250 0.10 1 1581 . 141 PHE HB3 H 3.086 0.050 2 1582 . 141 PHE HB2 H 3.301 0.050 2 1583 . 141 PHE HD1 H 6.760 0.050 1 1584 . 141 PHE HE1 H 6.989 0.050 1 1585 . 141 PHE HE2 H 6.989 0.050 1 1586 . 141 PHE HD2 H 6.760 0.050 1 1587 . 141 PHE C C 176.700 0.10 1 1588 . 142 VAL N N 119.150 0.10 1 1589 . 142 VAL H H 8.716 0.050 1 1590 . 142 VAL CA C 67.160 0.10 1 1591 . 142 VAL HA H 3.095 0.050 1 1592 . 142 VAL CB C 31.500 0.10 1 1593 . 142 VAL HB H 1.800 0.050 1 1594 . 142 VAL CG2 C 21.330 0.10 1 1595 . 142 VAL HG2 H 0.696 0.050 2 1596 . 142 VAL CG1 C 23.140 0.10 1 1597 . 142 VAL HG1 H 0.417 0.050 2 1598 . 142 VAL C C 179.400 0.10 1 1599 . 143 GLN N N 119.180 0.10 1 1600 . 143 GLN H H 7.755 0.050 1 1601 . 143 GLN CA C 59.100 0.10 1 1602 . 143 GLN HA H 3.740 0.050 1 1603 . 143 GLN CB C 27.920 0.10 1 1604 . 143 GLN HB3 H 2.045 0.050 1 1605 . 143 GLN HB2 H 2.045 0.050 1 1606 . 143 GLN CG C 33.960 0.10 1 1607 . 143 GLN HG3 H 2.314 0.050 2 1608 . 143 GLN HG2 H 2.356 0.050 2 1609 . 143 GLN CD C 179.700 0.10 1 1610 . 143 GLN NE2 N 110.940 0.10 1 1611 . 143 GLN HE21 H 7.241 0.050 2 1612 . 143 GLN HE22 H 6.644 0.050 2 1613 . 143 GLN C C 177.900 0.10 1 1614 . 144 MET N N 118.340 0.10 1 1615 . 144 MET H H 7.532 0.050 1 1616 . 144 MET CA C 58.360 0.10 1 1617 . 144 MET HA H 3.984 0.050 1 1618 . 144 MET CB C 31.700 0.10 1 1619 . 144 MET HB3 H 1.880 0.050 2 1620 . 144 MET HB2 H 1.950 0.050 2 1621 . 144 MET CG C 31.216 0.10 1 1622 . 144 MET HG3 H 1.871 0.050 2 1623 . 144 MET HG2 H 2.286 0.050 2 1624 . 144 MET CE C 16.140 0.10 1 1625 . 144 MET HE H 0.536 0.050 1 1626 . 144 MET C C 178.200 0.10 1 1627 . 145 MET N N 114.790 0.10 1 1628 . 145 MET H H 7.740 0.050 1 1629 . 145 MET CA C 56.300 0.10 1 1630 . 145 MET HA H 3.990 0.050 1 1631 . 145 MET CB C 32.080 0.10 1 1632 . 145 MET HB3 H 1.720 0.050 2 1633 . 145 MET HB2 H 1.750 0.050 2 1634 . 145 MET CG C 32.600 0.10 1 1635 . 145 MET HG3 H 1.750 0.050 2 1636 . 145 MET HG2 H 2.461 0.050 2 1637 . 145 MET CE C 16.010 0.10 1 1638 . 145 MET HE H 0.938 0.050 1 1639 . 145 MET C C 177.900 0.10 1 1640 . 146 THR N N 108.270 0.10 1 1641 . 146 THR H H 7.658 0.050 1 1642 . 146 THR CA C 61.800 0.10 1 1643 . 146 THR HA H 4.280 0.050 1 1644 . 146 THR CB C 70.303 0.10 1 1645 . 146 THR HB H 4.239 0.050 1 1646 . 146 THR CG2 C 21.330 0.10 1 1647 . 146 THR HG2 H 1.086 0.050 1 1648 . 146 THR C C 174.400 0.10 1 1649 . 147 ALA N N 126.062 0.10 1 1650 . 147 ALA H H 7.312 0.050 1 1651 . 147 ALA CA C 52.900 0.10 1 1652 . 147 ALA HA H 4.174 0.050 1 1653 . 147 ALA CB C 18.900 0.10 1 1654 . 147 ALA HB H 1.340 0.050 1 1655 . 147 ALA C C 176.800 0.10 1 1656 . 148 LYS N N 125.770 0.10 1 1657 . 148 LYS H H 7.840 0.050 1 1658 . 148 LYS CA C 57.400 0.10 1 1659 . 148 LYS HA H 4.050 0.050 1 1660 . 148 LYS CB C 33.710 0.10 1 1661 . 148 LYS HB3 H 1.621 0.050 2 1662 . 148 LYS HB2 H 1.757 0.050 2 1663 . 148 LYS CG C 24.680 0.10 1 1664 . 148 LYS HG3 H 1.350 0.050 1 1665 . 148 LYS HG2 H 1.350 0.050 1 1666 . 148 LYS CD C 28.950 0.10 1 1667 . 148 LYS HD3 H 1.596 0.050 1 1668 . 148 LYS HD2 H 1.596 0.050 1 1669 . 148 LYS CE C 42.000 0.10 1 1670 . 148 LYS HE3 H 2.934 0.050 1 1671 . 148 LYS HE2 H 2.934 0.050 1 1672 . 148 LYS C C 181.400 0.10 1 stop_ save_ save_chemical_shift_2 _Saveframe_category assigned_chemical_shifts _Details . loop_ _Sample_label $sample_1 $sample_2 stop_ _Sample_conditions_label $Exp-cond_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name 'olfactory channel peptide' _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 1 GLN H H 8.225 0.050 1 2 . 1 GLN HA H 4.180 0.050 1 3 . 1 GLN HB3 H 1.859 0.050 2 4 . 1 GLN HB2 H 1.981 0.050 2 5 . 1 GLN HG3 H 2.258 0.050 1 6 . 1 GLN HG2 H 2.258 0.050 1 7 . 2 GLN H H 8.449 0.050 1 8 . 2 GLN HA H 4.220 0.050 1 9 . 2 GLN HB3 H 1.991 0.050 2 10 . 2 GLN HB2 H 1.899 0.050 2 11 . 2 GLN HG3 H 2.269 0.050 1 12 . 2 GLN HG2 H 2.269 0.050 1 13 . 3 ARG H H 8.349 0.050 1 14 . 3 ARG HA H 4.245 0.050 1 15 . 3 ARG HB3 H 1.678 0.050 2 16 . 3 ARG HB2 H 1.771 0.050 2 17 . 3 ARG HG2 H 1.536 0.050 2 18 . 4 ARG H H 8.285 0.050 1 19 . 4 ARG HA H 4.311 0.050 1 20 . 4 ARG HB3 H 1.720 0.050 2 21 . 4 ARG HB2 H 1.800 0.050 2 22 . 4 ARG HG2 H 1.560 0.050 2 23 . 5 GLY H H 9.029 0.050 1 24 . 5 GLY HA3 H 3.899 0.050 2 25 . 5 GLY HA2 H 3.991 0.050 2 26 . 6 GLY H H 8.472 0.050 1 27 . 6 GLY HA3 H 3.776 0.050 2 28 . 6 GLY HA2 H 3.945 0.050 2 29 . 7 PHE H H 9.520 0.050 1 30 . 7 PHE HA H 4.580 0.050 1 31 . 7 PHE HB3 H 3.071 0.050 2 32 . 7 PHE HB2 H 3.361 0.050 2 33 . 7 PHE HD1 H 7.227 0.050 1 34 . 7 PHE HE1 H 6.402 0.050 1 35 . 7 PHE HZ H 6.748 0.050 1 36 . 7 PHE HE2 H 6.402 0.050 1 37 . 7 PHE HD2 H 7.227 0.050 1 38 . 8 ARG H H 8.501 0.050 1 39 . 8 ARG HA H 3.510 0.050 1 40 . 8 ARG HB3 H 1.703 0.050 2 41 . 8 ARG HB2 H 1.615 0.050 2 42 . 9 ARG H H 7.712 0.050 1 43 . 10 ILE H H 8.379 0.050 1 44 . 10 ILE HA H 3.979 0.050 1 45 . 10 ILE HB H 1.910 0.050 1 46 . 10 ILE HG2 H 1.153 0.050 1 47 . 11 ALA H H 8.882 0.050 1 48 . 11 ALA HA H 4.323 0.050 1 49 . 11 ALA HB H 1.365 0.050 1 50 . 12 ARG H H 7.913 0.050 1 51 . 12 ARG HA H 4.092 0.050 1 52 . 13 LEU H H 7.706 0.050 1 53 . 14 VAL H H 8.412 0.050 1 54 . 14 VAL HA H 3.535 0.050 1 55 . 14 VAL HB H 2.381 0.050 1 56 . 14 VAL HG2 H 0.894 0.050 2 57 . 14 VAL HG1 H 1.087 0.050 2 58 . 15 GLY H H 8.142 0.050 1 59 . 15 GLY HA3 H 3.784 0.050 2 60 . 15 GLY HA2 H 3.981 0.050 2 61 . 16 VAL H H 7.978 0.050 1 62 . 16 VAL HA H 3.675 0.050 1 63 . 16 VAL HB H 2.270 0.050 1 64 . 16 VAL HG2 H 1.008 0.050 2 65 . 16 VAL HG1 H 0.861 0.050 2 66 . 17 LEU H H 8.496 0.050 1 67 . 17 LEU HA H 4.236 0.050 1 68 . 17 LEU HD1 H 1.011 0.050 2 69 . 17 LEU HD2 H 0.874 0.050 2 70 . 18 ARG H H 8.334 0.050 1 71 . 18 ARG HA H 3.871 0.050 1 72 . 19 GLU H H 7.872 0.050 1 73 . 19 GLU HA H 4.047 0.050 1 74 . 19 GLU HB3 H 1.902 0.050 2 75 . 19 GLU HB2 H 2.116 0.050 2 76 . 19 GLU HG2 H 2.397 0.050 2 77 . 20 TRP H H 8.392 0.050 1 78 . 20 TRP HA H 4.218 0.050 1 79 . 20 TRP HB3 H 3.208 0.050 2 80 . 20 TRP HB2 H 3.480 0.050 2 81 . 20 TRP HD1 H 7.233 0.050 1 82 . 20 TRP HE1 H 9.742 0.050 3 83 . 20 TRP HZ2 H 7.004 0.050 3 84 . 20 TRP HH2 H 6.620 0.050 1 85 . 20 TRP HZ3 H 6.500 0.050 3 86 . 20 TRP HE3 H 7.173 0.050 3 87 . 21 ALA H H 8.010 0.050 1 88 . 21 ALA HA H 3.875 0.050 1 89 . 21 ALA HB H 1.169 0.050 1 90 . 22 TYR H H 7.847 0.050 1 91 . 22 TYR HA H 4.204 0.050 1 92 . 22 TYR HB3 H 3.002 0.050 2 93 . 22 TYR HB2 H 3.067 0.050 2 94 . 22 TYR HD1 H 7.058 0.050 1 95 . 22 TYR HE1 H 6.695 0.050 1 96 . 22 TYR HE2 H 6.695 0.050 1 97 . 22 TYR HD2 H 7.058 0.050 1 98 . 24 ASN H H 7.816 0.050 1 99 . 24 ASN HA H 4.603 0.050 1 100 . 24 ASN HB3 H 2.324 0.050 2 101 . 24 ASN HB2 H 2.577 0.050 2 102 . 25 PHE H H 7.745 0.050 1 103 . 25 PHE HA H 4.565 0.050 1 104 . 25 PHE HB3 H 2.934 0.050 2 105 . 25 PHE HB2 H 3.105 0.050 2 106 . 25 PHE HD1 H 6.857 0.050 3 107 . 26 ARG H H 7.835 0.050 1 108 . 26 ARG HA H 4.049 0.050 1 109 . 26 ARG HB3 H 1.594 0.050 2 110 . 26 ARG HB2 H 1.735 0.050 2 111 . 26 ARG HG3 H 1.329 0.050 2 112 . 26 ARG HG2 H 1.461 0.050 2 stop_ save_