data_5245 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; Heteroduplex of chirally pure R-methylphosphonate/DNA duplex ; _BMRB_accession_number 5245 _BMRB_flat_file_name bmr5245.str _Entry_type new _Submission_date 2001-12-26 _Accession_date 2001-12-26 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Thiviyanathan Varatharasa . . 2 Vyazovkina K. V. . 3 Gozansky E. K. . 4 Bichenkova E. . . 5 Abramova T. V. . 6 Luxon B. A. . 7 Lebedev A. V. . 8 Gorenstein David G. . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 2 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 109 "31P chemical shifts" 13 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2010-07-19 update BMRB 'update DNA residue label to two-letter code' 2002-02-08 original author 'original release' stop_ save_ ############################# # Citation for this entry # ############################# save_entry_citation _Saveframe_category entry_citation _Citation_full . _Citation_title ; Structure of hybrid backbone methylphosphonate DNA heteroduplexes: effect of R and S stereochemistry. ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 11790104 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Thiviyanathan Varatharasa . . 2 Vyazovkina Katya V. . 3 Gozansky E. K. . 4 Bichenkova E. . . 5 Abramova T. V. . 6 Luxon Bruce A. . 7 Lebedev A. V. . 8 Gorenstein David G. . stop_ _Journal_abbreviation Biochemistry _Journal_volume 41 _Journal_issue 3 _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first 827 _Page_last 838 _Year 2002 _Details . loop_ _Keyword 'methyl phosphonate' 'modified DNA' 'anti sense' aptamers stop_ save_ ####################################### # Cited references within the entry # ####################################### save_ref_1 _Saveframe_category citation _Citation_full ; Ferguson DM, Kollman PA. Application of free-energy decomposition to determine the relative stability of R and S oligodeoxyribonucleotide methylphosphonates. Antisense Res Dev. 1991 Fall;1(3):243-54. ; _Citation_title 'Application of free-energy decomposition to determine the relative stability of R and S oligodeoxyribonucleotide methylphosphonates.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 1821645 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Ferguson 'D M' M. . 2 Kollman 'P A' A. . stop_ _Journal_abbreviation 'Antisense Res. Dev.' _Journal_name_full 'Antisense research and development' _Journal_volume 1 _Journal_issue 3 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 243 _Page_last 254 _Year 1991 _Details ; The stereoselective stability of oligodeoxyribonucleotide methylphosphonates is examined using free-energy computer simulations. These modified phosphate linkages have the potential to be important antisense therapeutics that can be targeted on specific sequences of single- and double-stranded DNA, as well as crucial RNA messages. The stability of hybrid duplexes that contain these modified linkages is known experimentally to depend on the configuration of the chiral phosphonate center. Free-energy decomposition calculations were performed on three DNA oligomers to determine the origin of the structural interactions and physical properties that influence the relative stability of R and S methylphosphonate diastereomers. The strategy applied used free-energy decomposition methods to evaluate the free-energy contributions from selected groups. The results indicated that only three groups have a steric effect on the stability: the C2' and C3' substituents on the S diastereomer (5' side) and the C5' substituents on the R diastereomer (3' side). The balance considerably favors the R configuration in all the isomers studied and is not sequence dependent. The electrostatic effects were much more variable and were shown to be dependent on the conformation of duplex. The solvent interactions, however, were consistent and contributed favorably to the stability of the R over the S diastereomer. This favorable solvation energy for the R diastereomer was surprising (since the methyl group is more solvent exposed in this configuration) and was further supported by ab initio and associated free-energy calculations. This study concludes that oligonucleotides containing R-methylphosphonate linkages will normally form more stable duplexes than the corresponding S diastereomer irrespective of sequence, but also points that conformational changes may allow for a reversal in stability. ; save_ save_ref_2 _Saveframe_category citation _Citation_full ; Vyazovkina EV, Savchenko EV, Lokhov SG, Engels JW, Wickstrom E, Lebedev AV. Synthesis of specific diastereomers of a DNA methylphosphonate heptamer, d(CpCpApApApCpA), and stability of base pairing with the normal DNA octamer d(TPGPTPTPTPGPGPC). Nucleic Acids Res. 1994 Jun 25;22(12):2404-9. ; _Citation_title 'Synthesis of specific diastereomers of a DNA methylphosphonate heptamer, d(CpCpApApApCpA), and stability of base pairing with the normal DNA octamer d(TPGPTPTPTPGPGPC).' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 8036171 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Vyazovkina 'E V' V. . 2 Savchenko 'E V' V. . 3 Lokhov 'S G' G. . 4 Engels 'J W' W. . 5 Wickstrom E . . 6 Lebedev 'A V' V. . stop_ _Journal_abbreviation 'Nucleic Acids Res.' _Journal_name_full 'Nucleic acids research' _Journal_volume 22 _Journal_issue 12 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 2404 _Page_last 2409 _Year 1994 _Details ; DNA methylphosphonates are candidate derivatives for use in antisense DNA therapy. Their efficacy is limited by weak hybridization. One hypothesis to explain this phenomenon holds that one configuration of the chiral methylphosphonate linkage, Rp, permits stronger base pairing than the other configuration, Sp. To test this hypothesis, four specific pairs of Rp and Sp diastereomers of the DNA methylphosphonate heptamer d(CpCpApApApCpA) were prepared by block coupling of different combinations of individual diastereomers of d(CpCpApA) and d(ApCpA). Each pair of the diastereomers of the heptamer was separated into individual diastereomes using affinity chromatography on a Lichrosorb-NH2 silica column with a covalently attached complementary normal DNA octamer, d(pTpGpTpTpTpGpGpC). The stabilities of complementary complexes of phosphodiester d(TpGpTpTpTpGpGpC) with 8 individual diastereomers of methylphosphonate d(CpCpApApApCpA) were studied by measuring their melting temperatures (Tm). A direct correlation of Tm values with the number of Rp methylphosphonate centers in the heptamer was found: the more Rp centers, the higher the stability of the complex. Tm values for the diastereomers with 6 all-Rp or all-Sp methylphosphonate centers were found to be 30.5 degrees and 12.5 degrees C, respectively, in 100 mM NaCl, 10 mM Na2HPO4, 1 mM EDTA, pH 7.0 with 15 microM of each oligomer. On the average, each substitution of one Rp-center to an Sp-center in the heptamer decreased the Tm by 3 degrees C. Under the same conditions, the Tm of the normal DNA heptamer with its complement was 21 degrees C. These results are consistent with the model that all-Rp methylphosphonate DNAs hybridize much more tightly to complementary normal DNA than do racemic methylphosphonate DNAs, and may therefore exhibit greater potency as antisense inhibitors. ; save_ ################################## # Molecular system description # ################################## save_system_Methyl_phosphonate _Saveframe_category molecular_system _Mol_system_name 5'-D(*TP*GP*TP*TP*TP*GP*GP*C)-3' _Abbreviation_common 'Methyl phosphonate' _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label 'R-methylphosphonate/DNA 1' $MEP_1 'R-methylphosphonate/DNA 2' $MEP_2 stop_ _System_molecular_weight . _System_physical_state native _System_oligomer_state duplex _System_paramagnetic no _System_thiol_state 'not present' _Database_query_date . _Details . save_ ######################## # Monomeric polymers # ######################## save_MEP_1 _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class DNA _Name_common methylphosphonate _Abbreviation_common MP _Molecular_mass . _Mol_thiol_state 'not present' _Details . ############################## # Polymer residue sequence # ############################## _Residue_count 8 _Mol_residue_sequence TGTTTGGC loop_ _Residue_seq_code _Residue_label 1 DT 2 DG 3 DT 4 DT 5 DT 6 DG 7 DG 8 DC stop_ _Sequence_homology_query_date . _Sequence_homology_query_revised_last_date . save_ save_MEP_2 _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class DNA _Name_common methylphosphonate _Abbreviation_common MP _Molecular_mass . _Mol_thiol_state 'not present' _Details . _Residue_count 7 _Mol_residue_sequence CXXXXXX loop_ _Residue_seq_code _Residue_author_seq_code _Residue_label 1 9 DC 2 10 CMR 3 11 RMP 4 12 RMP 5 13 RMP 6 14 CMR 7 15 RMP stop_ _Sequence_homology_query_date . _Sequence_homology_query_revised_last_date . save_ ###################### # Polymer residues # ###################### save_CMR _Saveframe_category polymer_residue _Mol_type non-polymer _Name_common 2'-DEOXY-CYTIDINE-5'-RP-MONOMETHYLPHOSPHONATE _Abbreviation_common CMR _BMRB_code CMR _PDB_code CMR _Standard_residue_derivative . loop_ _Mol_label _Residue_seq_code $MEP_2 2 $MEP_2 6 stop_ _Molecular_mass . _Mol_paramagnetic no _Details . loop_ _Atom_name _PDB_atom_name _Atom_type _Atom_chirality _Atom_charge _Atom_oxidation_number _Atom_unpaired_electrons P P P . 0 . ? O1P O1P O . 0 . ? CMP CMP C . 0 . ? HMP1 HMP1 H . 0 . ? HMP2 HMP2 H . 0 . ? HMP3 HMP3 H . 0 . ? O5' O5* O . 0 . ? C5' C5* C . 0 . ? C4' C4* C . 0 . ? O4' O4* O . 0 . ? C3' C3* C . 0 . ? O3' O3* O . 0 . ? C2' C2* C . 0 . ? C1' C1* C . 0 . ? N1 N1 N . 0 . ? C2 C2 C . 0 . ? O2 O2 O . 0 . ? N3 N3 N . 0 . ? C4 C4 C . 0 . ? N4 N4 N . 0 . ? C5 C5 C . 0 . ? C6 C6 C . 0 . ? H41 H41 H . 0 . ? H42 H42 H . 0 . ? H6 H6 H . 0 . ? H1' H1* H . 0 . ? H2' H2*1 H . 0 . ? H2'' H2*2 H . 0 . ? H3' H3* H . 0 . ? H4' H4* H . 0 . ? H5' H5*1 H . 0 . ? H5'' H5*2 H . 0 . ? stop_ loop_ _Bond_order _Bond_atom_one_atom_name _Bond_atom_two_atom_name _PDB_bond_atom_one_atom_name _PDB_bond_atom_two_atom_name SING P CMP ? ? DOUB P O1P ? ? SING P O5' ? ? SING CMP HMP1 ? ? SING CMP HMP2 ? ? SING CMP HMP3 ? ? SING O5' C5' ? ? SING C5' C4' ? ? SING C5' H5' ? ? SING C5' H5'' ? ? SING C4' O4' ? ? SING C4' C3' ? ? SING C4' H4' ? ? SING O4' C1' ? ? SING C1' N1 ? ? SING C1' C2' ? ? SING C1' H1' ? ? SING N1 C6 ? ? SING N1 C2 ? ? DOUB C6 C5 ? ? SING C6 H6 ? ? SING C5 C4 ? ? SING C5 H5 ? ? SING C4 N4 ? ? DOUB C4 N3 ? ? SING N4 H41 ? ? SING N4 H42 ? ? SING N3 C2 ? ? DOUB C2 O2 ? ? SING C3' C2' ? ? SING C3' O3' ? ? SING C3' H3' ? ? SING C2' H2' ? ? SING C2' H2'' ? ? SING O3' P ? ? stop_ save_ save_RMP _Saveframe_category polymer_residue _Mol_type non-polymer _Name_common 2'-DEOXY-ADENOSINE-5'-RP-MONOMETHYLPHOSPHONATE _Abbreviation_common RMP _BMRB_code RMP _PDB_code RMP _Standard_residue_derivative . loop_ _Mol_label _Residue_seq_code $MEP_2 3 $MEP_2 4 $MEP_2 5 $MEP_2 7 stop_ _Molecular_mass . _Mol_paramagnetic no _Details . loop_ _Atom_name _PDB_atom_name _Atom_type _Atom_chirality _Atom_charge _Atom_oxidation_number _Atom_unpaired_electrons P P P . 0 . ? O1P O1P O . 0 . ? CMP CMP C . 0 . ? HMP1 HMP1 H . 0 . ? HMP2 HMP2 H . 0 . ? HMP3 HMP3 H . 0 . ? O5' O5* O . 0 . ? C5' C5* C . 0 . ? C4' C4* C . 0 . ? O4' O4* O . 0 . ? C3' C3* C . 0 . ? O3' O3* O . 0 . ? C2' C2* C . 0 . ? C1' C1* C . 0 . ? N9 N9 N . 0 . ? C8 C8 C . 0 . ? N7 N7 N . 0 . ? C5 C5 C . 0 . ? C6 C6 C . 0 . ? N6 N6 N . 0 . ? N1 N1 N . 0 . ? C2 C2 C . 0 . ? N3 N3 N . 0 . ? C4 C4 C . 0 . ? H5' H5*1 H . 0 . ? H5'' H5*2 H . 0 . ? H4' H4* H . 0 . ? H3' H3* H . 0 . ? HO5' HO5* H . 0 . ? H2' H2*1 H . 0 . ? H2'' H2*2 H . 0 . ? H1' H1* H . 0 . ? H8 H8 H . 0 . ? H2 H2 H . 0 . ? H61 H61 H . 0 . ? H62 H62 H . 0 . ? stop_ loop_ _Bond_order _Bond_atom_one_atom_name _Bond_atom_two_atom_name _PDB_bond_atom_one_atom_name _PDB_bond_atom_two_atom_name DOUB P CMP ? ? SING P O1P ? ? SING P O5' ? ? SING CMP HMP1 ? ? SING CMP HMP2 ? ? SING CMP HMP3 ? ? SING O5' C5' ? ? SING C5' C4' ? ? SING C5' H5' ? ? SING C5' H5'' ? ? SING C4' O4' ? ? SING C4' C3' ? ? SING C4' H4' ? ? SING O4' C1' ? ? SING C1' N9 ? ? SING C1' C2' ? ? SING C1' H1' ? ? SING N9 C8 ? ? SING N9 C4 ? ? DOUB C8 N7 ? ? SING C8 H8 ? ? SING N7 C5 ? ? SING C5 C6 ? ? DOUB C5 C4 ? ? SING C6 N6 ? ? DOUB C6 N1 ? ? SING N6 H61 ? ? SING N6 H62 ? ? SING N1 C2 ? ? DOUB C2 N3 ? ? SING C2 H2 ? ? DOUB N3 C4 ? ? SING C3' C2' ? ? SING C3' O3' ? ? SING C3' H3' ? ? SING C2' H2' ? ? SING C2' H2'' ? ? SING O3' P ? ? stop_ save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species _Details $MEP_1 . . . . . . 'Not applicable.' $MEP_2 . . . . . . 'Not applicable.' stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_name $MEP_1 'chemical synthesis' . . . . . $MEP_2 'chemical synthesis' . . . . . stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_sample_1 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $MEP_1 1.8 mM . $MEP_2 1.8 mM . NaCl 100 mM . phosphate 10 mM . EDTA 0.1 mM . H2O 90 % . D2O 10 % . stop_ save_ save_sample_2 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $MEP_1 1.8 mM . $MEP_2 1.8 mM . NaCl 100 mM . phosphate 10 mM . EDTA 0.1 mM . D2O 100 % . stop_ save_ ############################ # Computer software used # ############################ save_VNMR _Saveframe_category software _Name VNMR _Version 5.1 loop_ _Task 'data analysis' stop_ _Details varian save_ save_AMBER _Saveframe_category software _Name AMBER _Version 5.0 loop_ _Task refinement stop_ _Details UCSF save_ save_MORASS _Saveframe_category software _Name MORASS _Version 2.0 loop_ _Task 'iterative matrix relaxation' stop_ _Details 'Post, Meadows, Gorenstein' save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_NMR_spectrometer_1 _Saveframe_category NMR_spectrometer _Manufacturer Varian _Model UNITYplus _Field_strength 400 _Details . save_ save_NMR_spectrometer_2 _Saveframe_category NMR_spectrometer _Manufacturer Varian _Model UNITYplus _Field_strength 750 _Details . save_ ############################# # NMR applied experiments # ############################# save_2D_NOESY_1 _Saveframe_category NMR_applied_experiment _Experiment_name '2D NOESY' _Sample_label . save_ save_DQF-COSY_2 _Saveframe_category NMR_applied_experiment _Experiment_name DQF-COSY _Sample_label . save_ save_2D_TOCSY_3 _Saveframe_category NMR_applied_experiment _Experiment_name '2D TOCSY' _Sample_label . save_ save_NMR_spec_expt__0_1 _Saveframe_category NMR_applied_experiment _Experiment_name '2D NOESY' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_2 _Saveframe_category NMR_applied_experiment _Experiment_name DQF-COSY _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_3 _Saveframe_category NMR_applied_experiment _Experiment_name '2D TOCSY' _BMRB_pulse_sequence_accession_number . _Details . save_ ####################### # Sample conditions # ####################### save_sample_cond_1 _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH 7.0 0.1 n/a temperature 298 1 K 'ionic strength' 100 . mM pressure 1 . atm stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis _Indirect_shift_ratio DSS H 1 'methyl protons' ppm 0.0 internal direct . . . 1.0 'phosphoric acid (85%)' P 31 phosphate ppm 0.0 external direct . . . 1.0 stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_chemical_shift_set_1 _Saveframe_category assigned_chemical_shifts _Details . loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $sample_cond_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name 'R-methylphosphonate/DNA 1' _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 1 DT H6 H 7.63 0.05 1 2 . 1 DT H71 H 1.79 0.05 1 3 . 1 DT H72 H 1.79 0.05 1 4 . 1 DT H73 H 1.79 0.05 1 5 . 1 DT H1' H 5.84 0.05 1 6 . 1 DT H2' H 2.44 0.05 1 7 . 1 DT H2'' H 2.25 0.05 1 8 . 1 DT H3' H 4.86 0.05 1 9 . 1 DT H4' H 4.22 0.05 1 10 . 2 DG H8 H 8.09 0.05 1 11 . 2 DG H1' H 6.13 0.05 1 12 . 2 DG H2' H 2.93 0.05 1 13 . 2 DG H2'' H 2.78 0.05 1 14 . 2 DG H3' H 5.02 0.05 1 15 . 2 DG H4' H 4.45 0.05 1 16 . 2 DG P P -0.73 0.1 1 17 . 3 DT H6 H 7.44 0.05 1 18 . 3 DT H71 H 1.43 0.05 1 19 . 3 DT H72 H 1.43 0.05 1 20 . 3 DT H73 H 1.43 0.05 1 21 . 3 DT H1' H 6.22 0.05 1 22 . 3 DT H2' H 2.69 0.05 1 23 . 3 DT H2'' H 2.37 0.05 1 24 . 3 DT H3' H 4.95 0.05 1 25 . 3 DT H4' H 4.37 0.05 1 26 . 3 DT P P -1.03 0.1 5 27 . 4 DT H6 H 7.58 0.05 1 28 . 4 DT H71 H 1.67 0.05 1 29 . 4 DT H72 H 1.67 0.05 1 30 . 4 DT H73 H 1.67 0.05 1 31 . 4 DT H1' H 6.19 0.05 1 32 . 4 DT H2' H 2.65 0.05 1 33 . 4 DT H2'' H 2.27 0.05 1 34 . 4 DT H3' H 4.94 0.05 1 35 . 4 DT H4' H 4.23 0.05 1 36 . 4 DT P P -1.24 0.1 1 37 . 5 DT H6 H 7.38 0.05 1 38 . 5 DT H71 H 1.74 0.05 1 39 . 5 DT H72 H 1.74 0.05 1 40 . 5 DT H73 H 1.74 0.05 1 41 . 5 DT H1' H 5.80 0.05 1 42 . 5 DT H2' H 2.35 0.05 1 43 . 5 DT H2'' H 2.06 0.05 1 44 . 5 DT H3' H 4.88 0.05 1 45 . 5 DT H4' H 4.12 0.05 1 46 . 5 DT P P -0.89 0.1 1 47 . 6 DG H8 H 7.93 0.05 1 48 . 6 DG H1' H 5.51 0.05 1 49 . 6 DG H2' H 2.69 0.05 1 50 . 6 DG H2'' H 2.69 0.05 1 51 . 6 DG H3' H 5.01 0.05 1 52 . 6 DG H4' H 4.37 0.05 1 53 . 6 DG P P -1.31 0.1 1 54 . 7 DG H8 H 7.87 0.05 1 55 . 7 DG H1' H 6.07 0.05 1 56 . 7 DG H2' H 2.68 0.05 1 57 . 7 DG H2'' H 2.61 0.05 1 58 . 7 DG H3' H 4.97 0.05 1 59 . 7 DG H4' H 4.42 0.05 1 60 . 7 DG P P -0.96 0.1 5 61 . 8 DC H5 H 5.85 0.05 1 62 . 8 DC H6 H 7.74 0.05 1 63 . 8 DC H1' H 6.22 0.05 1 64 . 8 DC H2' H 2.33 0.05 1 65 . 8 DC H2'' H 2.25 0.05 1 66 . 8 DC H3' H 4.55 0.05 1 67 . 8 DC H4' H 4.10 0.05 1 68 . 8 DC P P -0.61 0.1 1 stop_ save_ save_chemical_shift_set_2 _Saveframe_category assigned_chemical_shifts _Details . loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $sample_cond_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name 'R-methylphosphonate/DNA 2' _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 1 DC H5 H 5.86 0.05 1 2 . 1 DC H6 H 7.64 0.05 1 3 . 1 DC H1' H 5.97 0.05 1 4 . 1 DC H2' H 2.39 0.05 1 5 . 1 DC H2'' H 2.15 0.05 1 6 . 1 DC H3' H 5.01 0.05 1 7 . 1 DC H4' H 4.16 0.05 1 8 . 2 CMR H5 H 5.76 0.05 1 9 . 2 CMR H6 H 7.48 0.05 1 10 . 2 CMR H1' H 5.38 0.05 1 11 . 2 CMR H2' H 2.13 0.05 1 12 . 2 CMR H2'' H 2.03 0.05 1 13 . 2 CMR H3' H 5.06 0.05 1 14 . 2 CMR H4' H 4.19 0.05 1 15 . 2 CMR P P 35.74 0.1 1 16 . 3 RMP H2 H 7.67 0.05 1 17 . 3 RMP H8 H 8.28 0.05 1 18 . 3 RMP H1' H 5.87 0.05 1 19 . 3 RMP H2' H 2.90 0.05 1 20 . 3 RMP H2'' H 2.69 0.05 1 21 . 3 RMP H3' H 5.39 0.05 1 22 . 3 RMP H4' H 4.52 0.05 1 23 . 3 RMP P P 35.55 0.1 1 24 . 4 RMP H2 H 7.38 0.05 1 25 . 4 RMP H8 H 8.16 0.05 1 26 . 4 RMP H1' H 5.99 0.05 1 27 . 4 RMP H2' H 2.79 0.05 1 28 . 4 RMP H2'' H 2.75 0.05 1 29 . 4 RMP H3' H 5.28 0.05 1 30 . 4 RMP H4' H 4.55 0.05 1 31 . 4 RMP P P 35.92 0.1 1 32 . 5 RMP H2 H 7.21 0.05 1 33 . 5 RMP H8 H 8.04 0.05 1 34 . 5 RMP H1' H 6.07 0.05 1 35 . 5 RMP H2' H 2.71 0.05 1 36 . 5 RMP H2'' H 2.57 0.05 1 37 . 5 RMP H3' H 5.28 0.05 1 38 . 5 RMP H4' H 4.53 0.05 1 39 . 5 RMP P P 35.82 0.1 1 40 . 6 CMR H5 H 5.19 0.05 1 41 . 6 CMR H6 H 7.09 0.05 1 42 . 6 CMR H1' H 5.71 0.05 1 43 . 6 CMR H2' H 2.16 0.05 1 44 . 6 CMR H2'' H 1.74 0.05 1 45 . 6 CMR H3' H 4.98 0.05 1 46 . 6 CMR H4' H 4.29 0.05 1 47 . 6 CMR P P 35.48 0.1 1 48 . 7 RMP H8 H 8.12 0.05 1 49 . 7 RMP H1' H 6.29 0.05 1 50 . 7 RMP H2' H 2.66 0.05 1 51 . 7 RMP H2'' H 2.41 0.05 1 52 . 7 RMP H3' H 4.65 0.05 1 53 . 7 RMP H4' H 4.21 0.05 1 54 . 7 RMP P P 36.10 0.1 1 stop_ save_