data_4988 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; Three Dimensional Solution Structure of Huwentoxin-II BY 2D 1H-NMR ; _BMRB_accession_number 4988 _BMRB_flat_file_name bmr4988.str _Entry_type original _Submission_date 2001-04-12 _Accession_date 2001-04-17 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Shu Qin . . 2 Lu Shan-yun . . 3 Gu Xiao-chen . . 4 Liang Song-ping . . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 1 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 249 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2001-05-11 original BMRB . stop_ _Original_release_date 2001-04-17 save_ ############################# # Citation for this entry # ############################# save_entry_citation _Saveframe_category entry_citation _Citation_full . _Citation_title ; Three-dimensional Solution Structure Determination of Huwentoxin-II by 2D 1H-NMR ; _Citation_status submitted _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Shu Q. . . 2 Lu S. Y. . 3 Gu X. C. . 4 Liang S. P. . stop_ _Journal_abbreviation . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first . _Page_last . _Year . _Details . loop_ _Keyword 'disulfide bonds' 'insecticidal toxin' neurotoxin stop_ save_ ####################################### # Cited references within the entry # ####################################### save_ref_1 _Saveframe_category citation _Citation_full ; Q. SHU, S.Y. LU, X.C. GU, S.P. LIANG. Sequence-specific assignment of 1H-NMR resonance and determination of the secondary structure of HWTX-II. Acta Biochim. et Biophys. Sinica 2001,33: 65 ; _Citation_title ; Sequence-specific Assignment of (1)H-NMR Resonance and Determination of the Secondary Structure of HWTX-II. ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 12053191 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Shu . . . 2 Lu . Y. . 3 Gu . C. . 4 Liang . P. . stop_ _Journal_abbreviation 'Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao' _Journal_name_full 'Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica' _Journal_volume 33 _Journal_issue 1 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 65 _Page_last 70 _Year 2001 _Details ; Huwentoxin-II (HWTX-II)is an insecticidal peptide purified from the venom of spider Selenocosmia huwena. The structure of this toxin in solution was investigated using 2D-NMR. The complete sequence-specific assignments of proton resonance in the (1)H-NMR spectra of HWTX-II were obtained by analyzing a series of 2D spectrum, including COSY, DQF-COSY, TOCSY and NOESY. All the backbone protons and side chain protons, except epsilonNH(2) protons of Lys residues, were identified by d(alphaN), d(alpha&dgr);, d(NN) and d(betaN) connectivities. The results provide a basis for further determination of the solution conformation of HWTX-II. Furthermore the secondary structure of HWTX-II was determined from NMR data. It contained mainly extended conformation, especially a double-stranded anti-parallel beta-sheet with Trp27--Cys29 and Cys34--Lys36 at the C terminal, and it lacked helix. These characters of the secondary structure of HWTX-II were similar to those spider toxins which structure in solution had been reported. ; save_ save_ref_2 _Saveframe_category citation _Citation_full ; Q.SHU,R.H.HUANG,S.P.LIANG Assignment of disulfide bonds of huwentoxin-ii by Edman degradation sequencing and stepwise thiol modification. Eur. J. Biochem. 2001, 268(8):2301-2307 ; _Citation_title ; Assignment of the disulfide bonds of huwentoxin-II by Edman degradation sequencing and stepwise thiol modification. ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 11298747 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Shu Q . . 2 Huang R . . 3 Liang S . . stop_ _Journal_abbreviation 'Eur. J. Biochem.' _Journal_name_full 'European journal of biochemistry / FEBS' _Journal_volume 268 _Journal_issue 8 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 2301 _Page_last 2307 _Year 2001 _Details ; A novel strategy combining Edman degradation and thiol modification was developed to assign the three disulfides of huwentoxin-II (HWTX-II), an insecticidal peptide purified from the venom of the spider Selenocosmia huwena. Phenylthiohydantoin (Pth) derivatives of Cys and the elimination product, dehydroalanine (DeltaSer), can be observed in the Cys cycles during Edman degradation of native HWTX-II. The appearance of two products indicates that the disulfides of HWTX-II were split and that the free thiol group of the second half cystine has been generated. Information about the nature of the disulfide bridges of HWTX-II could be obtained from the sequencing signal if the nascent thiols were modified stepwise by 4-vinylpyridine. Using this method the disulfide bridges of HWTX-II were assigned as Cys4-Cys18, Cys8-Cys29 and Cys23-Cys34, which is different from that seen in HWTX-I, a neurotoxic peptide from the same spider. Using this strategy, one can assign the disulfide bonds of small proteins by sequencing and modification n - 1 times, where n is the number of disulfide bonds in the protein. The above assignment of the disulfide bonds of HWTX-II was confirmed by MALDI-TOF MS of tryptic fragments of HWTX-II. Some disulfide interchanging during proteolysis was observed by monitoring the kinetics of proteolysis of HWTX-II by MALDI-TOF MS. ; save_ save_ref_3 _Saveframe_category citation _Citation_full ; Purification and characterization of huwentoxin-II, a neurotoxic peptide from the venom of the Chinese bird spider Selenocosmia huwena. J. Pept. Res. 1999 May;53(5):486-491 ; _Citation_title ; Purification and characterization of huwentoxin-II, a neurotoxic peptide from the venom of the Chinese bird spider Selenocosmia huwena. ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 10424342 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Shu Q . . 2 Liang 'S P' P. . stop_ _Journal_abbreviation 'J. Pept. Res.' _Journal_name_full 'The journal of peptide research : official journal of the American Peptide Society' _Journal_volume 53 _Journal_issue 5 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 486 _Page_last 491 _Year 1999 _Details ; A neurotoxic peptide, huwentoxin-II (HWTX-II), was purified from the venom of the Chinese bird spider Selenocosmia huwena by ion exchange chromatography and reversed phase HPLC. The toxin can reversibly paralyse cockroaches for several hours, with an ED50 of 127 +/- 54 microg/g. HWTX-II blocks neuromuscular transmission in an isolated mouse phrenic nerve diaphragm preparation and acts cooperatively to potentiate the activity of huwentoxin-I. The complete amino sequence of HWTX-II was determined and found to consist of 37 amino acid residues, including six Cys residues. There is microheterogeneity (Ile/Gln) in position 10, and mass spectrometry indicated that the two isoproteins have a tendency to dimerize. It was determined by mass spectrometry that the six Cys residues are involved in three disulphide bonds. The sequence of HWTX-II is highly homologous with ESTX, a toxin from the tarantula Eurypefina californicum. ; save_ ################################## # Molecular system description # ################################## save_system_HWTX-II _Saveframe_category molecular_system _Mol_system_name HUWENTOXIN-II _Abbreviation_common HWTX-II _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label 'HUWENTOXIN-II(Ile, 10)' $HUWENTOXIN-II stop_ _System_molecular_weight . _System_physical_state native _System_oligomer_state monomer _System_paramagnetic no _System_thiol_state 'all disulfide bound' loop_ _Biological_function neurotoxin stop_ _Database_query_date . _Details . save_ ######################## # Monomeric polymers # ######################## save_HUWENTOXIN-II _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common Huwentoxin-II _Abbreviation_common HWTX-II _Molecular_mass 4284.3 _Mol_thiol_state 'all disulfide bound' _Details . ############################## # Polymer residue sequence # ############################## _Residue_count 37 _Mol_residue_sequence ; LFECSFSCEIEKEGDKPCKK KKCKGGWKCKFNMCVKV ; loop_ _Residue_seq_code _Residue_label 1 LEU 2 PHE 3 GLU 4 CYS 5 SER 6 PHE 7 SER 8 CYS 9 GLU 10 ILE 11 GLU 12 LYS 13 GLU 14 GLY 15 ASP 16 LYS 17 PRO 18 CYS 19 LYS 20 LYS 21 LYS 22 LYS 23 CYS 24 LYS 25 GLY 26 GLY 27 TRP 28 LYS 29 CYS 30 LYS 31 PHE 32 ASN 33 MET 34 CYS 35 VAL 36 LYS 37 VAL stop_ _Sequence_homology_query_date 2008-08-19 _Sequence_homology_query_revised_last_date 2008-08-19 loop_ _Database_name _Database_accession_code _Database_entry_mol_name _Sequence_query_to_submitted_percentage _Sequence_subject_length _Sequence_identity _Sequence_positive _Sequence_homology_expectation_value PDB 1I25 'Three Dimensional Solution Structure Of Huwentoxin-Ii By 2d 1h-Nmr' 100.00 37 100.00 100.00 1.67e-11 GenBank AAP33076 'huwentoxin-II precursor [Ornithoctonus huwena]' 100.00 85 100.00 100.00 4.89e-13 GenBank ABY77725 'HWTX-IIa precursor [Ornithoctonus huwena]' 97.30 85 100.00 100.00 2.00e-12 GenBank ABY77726 'HWTX-IIb precursor [Ornithoctonus huwena]' 100.00 85 100.00 100.00 4.89e-13 GenBank ABY77727 'HWTX-IIc precursor [Ornithoctonus huwena]' 97.30 85 100.00 100.00 1.89e-12 GenBank ABY77732 'HWTX-VIIIa precursor [Ornithoctonus huwena]' 97.30 84 100.00 100.00 2.23e-12 SWISS-PROT P68421 'Huwentoxin-7 precursor (Huwentoxin-VII) (HwTx-VII)' 100.00 84 100.00 100.00 5.78e-13 SWISS-PROT P82959 'Huwentoxin-2 form 1 precursor (Huwentoxin-II) (HwTx-II)' 100.00 85 100.00 100.00 4.89e-13 stop_ save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species _Organ $HUWENTOXIN-II 'Chinese bird spider' 29017 Eukaryota Metazoa Selenocosmia huwena 'venom gland' stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_name $HUWENTOXIN-II 'purified from the natural source' . . . . . stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_sample_1 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $HUWENTOXIN-II 4 mM . 'phosphate buffer' 20 mM . H2O 90 % . D2O 10 % . stop_ save_ save_sample_2 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $HUWENTOXIN-II 4 mM . 'phosphate buffer' 20 mM . D2O 100 % . stop_ save_ ############################ # Computer software used # ############################ save_FELIX _Saveframe_category software _Name FELIX _Version 98.0 loop_ _Task 'data analysis' stop_ _Details 'Molecular Simulations, Inc.' save_ save_X-PLOR _Saveframe_category software _Name X-PLOR _Version 3.851 loop_ _Task refinement stop_ _Details Brunger save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_NMR_spectrometer _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model DMX _Field_strength 500 _Details . save_ ############################# # NMR applied experiments # ############################# save_NOESY_1 _Saveframe_category NMR_applied_experiment _Experiment_name NOESY _Sample_label . save_ save_DQF-COSY_2 _Saveframe_category NMR_applied_experiment _Experiment_name DQF-COSY _Sample_label . save_ save_TOCSY_3 _Saveframe_category NMR_applied_experiment _Experiment_name TOCSY _Sample_label . save_ save_E-COSY_4 _Saveframe_category NMR_applied_experiment _Experiment_name E-COSY _Sample_label . save_ ####################### # Sample conditions # ####################### save_sample_cond_1 _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units 'ionic strength' 20 0.02 mM pH 5.4 0.2 n/a pressure 1 . atm temperature 300 1 K stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis TSP H 1 'methyl protons' ppm 0.00 internal direct cylindrical internal . stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_shift_set_1 _Saveframe_category assigned_chemical_shifts _Details . loop_ _Experiment_label NOESY stop_ loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $sample_cond_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name 'HUWENTOXIN-II(Ile, 10)' _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 1 LEU HA H 3.93 0.02 1 2 . 1 LEU HB2 H 1.56 0.02 1 3 . 1 LEU HB3 H 1.56 0.02 1 4 . 1 LEU HG H 1.59 0.02 1 5 . 1 LEU HD1 H 0.78 0.02 2 6 . 1 LEU HD2 H 0.80 0.02 2 7 . 2 PHE H H 8.48 0.02 1 8 . 2 PHE HA H 4.77 0.02 1 9 . 2 PHE HB2 H 3.00 0.02 2 10 . 2 PHE HB3 H 3.25 0.02 2 11 . 2 PHE HD1 H 7.33 0.02 1 12 . 2 PHE HD2 H 7.33 0.02 1 13 . 2 PHE HE1 H 7.37 0.02 1 14 . 2 PHE HE2 H 7.37 0.02 1 15 . 2 PHE HZ H 7.32 0.02 1 16 . 3 GLU H H 8.73 0.02 1 17 . 3 GLU HA H 4.54 0.02 1 18 . 3 GLU HB2 H 1.96 0.02 1 19 . 3 GLU HB3 H 1.96 0.02 1 20 . 3 GLU HG2 H 2.25 0.02 2 21 . 3 GLU HG3 H 2.57 0.02 2 22 . 4 CYS H H 9.60 0.02 1 23 . 4 CYS HA H 4.31 0.02 1 24 . 4 CYS HB2 H 2.61 0.02 2 25 . 4 CYS HB3 H 3.50 0.02 2 26 . 5 SER H H 9.95 0.02 1 27 . 5 SER HA H 4.06 0.02 1 28 . 5 SER HB2 H 3.51 0.02 2 29 . 5 SER HB3 H 3.81 0.02 2 30 . 6 PHE H H 9.75 0.02 1 31 . 6 PHE HA H 4.69 0.02 1 32 . 6 PHE HB2 H 3.06 0.02 2 33 . 6 PHE HB3 H 3.19 0.02 2 34 . 6 PHE HD1 H 7.26 0.02 1 35 . 6 PHE HD2 H 7.26 0.02 1 36 . 6 PHE HE1 H 7.36 0.02 1 37 . 6 PHE HE2 H 7.36 0.02 1 38 . 6 PHE HZ H 7.44 0.02 1 39 . 7 SER H H 7.96 0.02 1 40 . 7 SER HA H 4.48 0.02 1 41 . 7 SER HB2 H 3.93 0.02 1 42 . 7 SER HB3 H 3.93 0.02 1 43 . 8 CYS H H 7.48 0.02 1 44 . 8 CYS HA H 5.27 0.02 1 45 . 8 CYS HB2 H 2.57 0.02 2 46 . 8 CYS HB3 H 3.61 0.02 2 47 . 9 GLU H H 9.29 0.02 1 48 . 9 GLU HA H 4.57 0.02 1 49 . 9 GLU HB2 H 2.20 0.02 1 50 . 9 GLU HB3 H 2.20 0.02 1 51 . 9 GLU HG2 H 2.31 0.02 1 52 . 9 GLU HG3 H 2.31 0.02 1 53 . 10 ILE H H 8.09 0.02 1 54 . 10 ILE HA H 4.24 0.02 1 55 . 10 ILE HB H 2.01 0.02 1 56 . 10 ILE HG12 H 1.22 0.02 2 57 . 10 ILE HG13 H 1.55 0.02 2 58 . 10 ILE HG2 H 1.03 0.02 1 59 . 10 ILE HD1 H 0.91 0.02 1 60 . 11 GLU H H 8.44 0.02 1 61 . 11 GLU HA H 4.47 0.02 1 62 . 11 GLU HB2 H 1.88 0.02 2 63 . 11 GLU HB3 H 2.79 0.02 2 64 . 11 GLU HG2 H 2.03 0.02 2 65 . 11 GLU HG3 H 2.39 0.02 2 66 . 12 LYS H H 7.80 0.02 1 67 . 12 LYS HA H 4.92 0.02 1 68 . 12 LYS HB2 H 1.55 0.02 2 69 . 12 LYS HB3 H 1.64 0.02 2 70 . 12 LYS HG2 H 1.09 0.02 2 71 . 12 LYS HG3 H 1.18 0.02 2 72 . 12 LYS HD2 H 1.56 0.02 1 73 . 12 LYS HD3 H 1.56 0.02 1 74 . 12 LYS HE2 H 2.84 0.02 1 75 . 12 LYS HE3 H 2.84 0.02 1 76 . 13 GLU H H 8.45 0.02 1 77 . 13 GLU HA H 4.49 0.02 1 78 . 13 GLU HB2 H 2.07 0.02 1 79 . 13 GLU HB3 H 2.07 0.02 1 80 . 13 GLU HG2 H 2.34 0.02 1 81 . 13 GLU HG3 H 2.34 0.02 1 82 . 14 GLY H H 9.20 0.02 1 83 . 14 GLY HA2 H 3.79 0.02 2 84 . 14 GLY HA3 H 3.98 0.02 2 85 . 15 ASP H H 8.80 0.02 1 86 . 15 ASP HA H 4.52 0.02 1 87 . 15 ASP HB2 H 2.76 0.02 2 88 . 15 ASP HB3 H 2.87 0.02 2 89 . 16 LYS H H 7.88 0.02 1 90 . 16 LYS HA H 4.94 0.02 1 91 . 16 LYS HB2 H 1.94 0.02 1 92 . 16 LYS HB3 H 1.94 0.02 1 93 . 16 LYS HG2 H 1.51 0.02 2 94 . 16 LYS HG3 H 1.58 0.02 2 95 . 16 LYS HD2 H 1.77 0.02 1 96 . 16 LYS HD3 H 1.77 0.02 1 97 . 16 LYS HE2 H 3.08 0.02 1 98 . 16 LYS HE3 H 3.08 0.02 1 99 . 17 PRO HA H 4.92 0.02 1 100 . 17 PRO HB2 H 1.90 0.02 2 101 . 17 PRO HB3 H 2.40 0.02 2 102 . 17 PRO HG2 H 2.00 0.02 2 103 . 17 PRO HG3 H 2.12 0.02 2 104 . 17 PRO HD2 H 3.77 0.02 2 105 . 17 PRO HD3 H 3.98 0.02 2 106 . 18 CYS H H 7.96 0.02 1 107 . 18 CYS HA H 4.65 0.02 1 108 . 18 CYS HB2 H 3.02 0.02 2 109 . 18 CYS HB3 H 3.06 0.02 2 110 . 19 LYS H H 8.50 0.02 1 111 . 19 LYS HA H 4.46 0.02 1 112 . 19 LYS HB2 H 1.49 0.02 2 113 . 19 LYS HB3 H 1.61 0.02 2 114 . 19 LYS HG2 H 1.38 0.02 2 115 . 19 LYS HG3 H 1.68 0.02 2 116 . 19 LYS HD2 H 1.49 0.02 1 117 . 19 LYS HD3 H 1.49 0.02 1 118 . 19 LYS HE2 H 2.95 0.02 1 119 . 19 LYS HE3 H 2.95 0.02 1 120 . 20 LYS H H 8.93 0.02 1 121 . 20 LYS HA H 3.72 0.02 1 122 . 20 LYS HB2 H 1.44 0.02 1 123 . 20 LYS HB3 H 1.44 0.02 1 124 . 20 LYS HG2 H 1.22 0.02 2 125 . 20 LYS HG3 H 1.31 0.02 2 126 . 20 LYS HD2 H 1.60 0.02 1 127 . 20 LYS HD3 H 1.60 0.02 1 128 . 20 LYS HE2 H 2.94 0.02 1 129 . 20 LYS HE3 H 2.94 0.02 1 130 . 21 LYS H H 8.43 0.02 1 131 . 21 LYS HA H 4.06 0.02 1 132 . 21 LYS HB2 H 1.26 0.02 2 133 . 21 LYS HB3 H 1.41 0.02 2 134 . 21 LYS HG2 H 1.01 0.02 2 135 . 21 LYS HG3 H 1.08 0.02 2 136 . 21 LYS HD2 H 1.30 0.02 2 137 . 21 LYS HD3 H 1.38 0.02 2 138 . 21 LYS HE2 H 2.88 0.02 1 139 . 21 LYS HE3 H 2.88 0.02 1 140 . 22 LYS H H 8.24 0.02 1 141 . 22 LYS HA H 4.34 0.02 1 142 . 22 LYS HB2 H 1.69 0.02 2 143 . 22 LYS HB3 H 1.75 0.02 2 144 . 22 LYS HG2 H 1.42 0.02 2 145 . 22 LYS HG3 H 1.52 0.02 2 146 . 22 LYS HD2 H 1.69 0.02 1 147 . 22 LYS HD3 H 1.69 0.02 1 148 . 22 LYS HE2 H 3.04 0.02 1 149 . 22 LYS HE3 H 3.04 0.02 1 150 . 23 CYS H H 8.89 0.02 1 151 . 23 CYS HA H 4.66 0.02 1 152 . 23 CYS HB2 H 2.55 0.02 2 153 . 23 CYS HB3 H 3.10 0.02 2 154 . 24 LYS H H 8.56 0.02 1 155 . 24 LYS HA H 4.18 0.02 1 156 . 24 LYS HB2 H 1.38 0.02 2 157 . 24 LYS HB3 H 1.72 0.02 2 158 . 24 LYS HG2 H 1.30 0.02 1 159 . 24 LYS HG3 H 1.30 0.02 1 160 . 24 LYS HD2 H 1.36 0.02 2 161 . 24 LYS HD3 H 1.44 0.02 2 162 . 24 LYS HE2 H 2.71 0.02 1 163 . 24 LYS HE3 H 2.71 0.02 1 164 . 25 GLY H H 8.50 0.02 1 165 . 25 GLY HA2 H 3.84 0.02 2 166 . 25 GLY HA3 H 4.05 0.02 2 167 . 26 GLY H H 8.96 0.02 1 168 . 26 GLY HA2 H 3.70 0.02 2 169 . 26 GLY HA3 H 4.43 0.02 2 170 . 27 TRP H H 8.74 0.02 1 171 . 27 TRP HA H 5.27 0.02 1 172 . 27 TRP HB2 H 2.96 0.02 2 173 . 27 TRP HB3 H 3.55 0.02 2 174 . 27 TRP HD1 H 7.13 0.02 1 175 . 27 TRP HE1 H 10.38 0.02 1 176 . 27 TRP HE3 H 7.15 0.02 1 177 . 27 TRP HZ2 H 7.52 0.02 1 178 . 27 TRP HZ3 H 7.17 0.02 1 179 . 27 TRP HH2 H 7.27 0.02 1 180 . 28 LYS H H 9.69 0.02 1 181 . 28 LYS HA H 4.75 0.02 1 182 . 28 LYS HB2 H 1.66 0.02 2 183 . 28 LYS HB3 H 1.72 0.02 2 184 . 28 LYS HG2 H 1.28 0.02 2 185 . 28 LYS HG3 H 1.34 0.02 2 186 . 28 LYS HD2 H 1.64 0.02 1 187 . 28 LYS HD3 H 1.64 0.02 1 188 . 28 LYS HE2 H 2.91 0.02 1 189 . 28 LYS HE3 H 2.91 0.02 1 190 . 29 CYS H H 8.90 0.02 1 191 . 29 CYS HA H 5.07 0.02 1 192 . 29 CYS HB2 H 3.01 0.02 2 193 . 29 CYS HB3 H 3.10 0.02 2 194 . 30 LYS H H 9.68 0.02 1 195 . 30 LYS HA H 4.41 0.02 1 196 . 30 LYS HB2 H 1.52 0.02 2 197 . 30 LYS HB3 H 1.66 0.02 2 198 . 30 LYS HG2 H 1.01 0.02 2 199 . 30 LYS HG3 H 1.14 0.02 2 200 . 30 LYS HD2 H 1.54 0.02 1 201 . 30 LYS HD3 H 1.54 0.02 1 202 . 30 LYS HE2 H 2.76 0.02 1 203 . 30 LYS HE3 H 2.76 0.02 1 204 . 31 PHE H H 9.10 0.02 1 205 . 31 PHE HA H 4.34 0.02 1 206 . 31 PHE HB2 H 3.26 0.02 2 207 . 31 PHE HB3 H 3.32 0.02 2 208 . 31 PHE HD1 H 7.30 0.02 1 209 . 31 PHE HD2 H 7.30 0.02 1 210 . 31 PHE HE1 H 7.41 0.02 1 211 . 31 PHE HE2 H 7.41 0.02 1 212 . 31 PHE HZ H 7.35 0.02 1 213 . 32 ASN H H 8.76 0.02 1 214 . 32 ASN HA H 4.29 0.02 1 215 . 32 ASN HB2 H 2.56 0.02 2 216 . 32 ASN HB3 H 3.65 0.02 2 217 . 32 ASN HD21 H 7.29 0.02 2 218 . 32 ASN HD22 H 7.89 0.02 2 219 . 33 MET H H 7.90 0.02 1 220 . 33 MET HA H 5.06 0.02 1 221 . 33 MET HB2 H 2.13 0.02 1 222 . 33 MET HB3 H 2.13 0.02 1 223 . 33 MET HG2 H 2.68 0.02 2 224 . 33 MET HG3 H 2.76 0.02 2 225 . 33 MET HE H 2.16 0.02 1 226 . 34 CYS H H 9.27 0.02 1 227 . 34 CYS HA H 5.37 0.02 1 228 . 34 CYS HB2 H 2.91 0.02 2 229 . 34 CYS HB3 H 3.04 0.02 2 230 . 35 VAL H H 9.87 0.02 1 231 . 35 VAL HA H 4.80 0.02 1 232 . 35 VAL HB H 2.18 0.02 1 233 . 35 VAL HG1 H 1.00 0.02 2 234 . 35 VAL HG2 H 1.07 0.02 2 235 . 36 LYS H H 8.13 0.02 1 236 . 36 LYS HA H 3.30 0.02 1 237 . 36 LYS HB2 H 0.40 0.02 2 238 . 36 LYS HB3 H 1.23 0.02 2 239 . 36 LYS HG2 H 0.54 0.02 2 240 . 36 LYS HG3 H 0.74 0.02 2 241 . 36 LYS HD2 H 1.15 0.02 1 242 . 36 LYS HD3 H 1.15 0.02 1 243 . 36 LYS HE2 H 2.79 0.02 1 244 . 36 LYS HE3 H 2.79 0.02 1 245 . 37 VAL H H 7.58 0.02 1 246 . 37 VAL HA H 3.82 0.02 1 247 . 37 VAL HB H 1.96 0.02 1 248 . 37 VAL HG1 H 0.76 0.02 2 249 . 37 VAL HG2 H 0.85 0.02 2 stop_ save_